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FOREWORD

This is the final report under the Feasibility Study of

Interactive Low and Medium Data Rate Satellite Links in the High

Frequency Fixed Satellite Services (FSS) Bands. The principal

authors of this report are Mr. William T. Ralston and Mr. John A.

Kilpatrick, the SIGNATRON project manager. Significant contribu-

tions were also made by Dr. Brian E. White, formerly of SIGNATRON,

and Mr. Wayne T. Chen of W.T. Chen & Co., Inc. a market analysis

consultant.



ABSTRACT

_his study was performed to determine the near term

feasibility of direct-to-subscriber services using the 30/20 GHz

Fixed Satellite Services frequency bands, and to identify those

technologies which need to be further developed before such a

system can be implemented.

To determine this feasibility, dozens of potential

applications were examined for their near-term viability, and the

subscriber base of three promising applications were estimated.

The system requirements, terminal design, and satellite architec-

ture were all investigated to determine whether a 30/20 GHz FSS

system is technically and economically feasible by the mid-1990s.

We have concluded that such a system is feasible,

although further maturation of some technologies is needed. This

system would likely consist of one or two multibeam satellites

serving hub/spoke networks of simple user terminals and more

complex, multi-channel terminals of the service providers. Rain

compensation would be accomplished non-adaptively through the use

of coding, non-uniform satellite TWT power that is a function of a

beam's anticipated downlink fading, and signal regeneration of

traffic to the wettest climate regions. We also estimate that a

potential market of almost two million users could exist in the

mid-1990s time frame for home banking and financial services via

Ka-band satellite.
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SECTIONI
INTRODUCTION

1.1 PROBLEMADDRESSED

The history of satellite communications has shown a marked trend
towards placing the earth terminals with the end users. Early systems
employed large terminals and very simple bent-pipe transponders; the users
would interface to the ground stations via landline or other established
media. As satellite technology has matured, more and more of the system
complexity has been placed in the space segment resulting in ever simpler (and
smaller) earth terminals. Someexamples of this trend are the VSATs (Very
Small Aperture Terminals) operating in the Ku-band, ACTS(Advanced Communica-

tions Technology Satellite) with its Micro-1 terminals, and the portable

terminals being used by many television news organizations. It seems inevita-

ble that this trend will continue.

Along with this shift towards the end user is an associated shift

to higher frequencies. This is mainly due to the competition for lower

frequency bands. The Mobile Satellite Service (MSS) was unable to get the UHF

frequencies it has fought for and instead was awarded spectrum at L-band.

Likewise, C-band is nearing saturation with satellites now being placed at 2 °

orbital spacing. The spectrum of the future would appear to be the Ku- and

Ka-bands. Aside from bandwidth competition, the shift towards small terminals

has also focused attention on higher frequencies since smaller antennas are

able to achieve the necessary gains.

The combination of these two trends in the satellite communications

industry has led to this study effort: determine the feasibility of using the

30/20 GHz band (or higher) for low and medium data rate applications of Fixed

Satellite Services (FSS). A complete list of the frequency bands allocated to

the FSS is given in Table 1-I [Reinhart, 1981]. It shows that as much as

3 GHz of bandwidth is allocated to FSS at Ka-band. In that no U.S. satellite

which would use these frequencies has yet been placed in orbit (ACTS is

scheduled for launch in 1990), one can see that tremendous spectrum availabil-

ity exists at Ka-band.

A number of potential applications have been identified for direct-

to-subscriber FSS. These applications include home shopping, rural telephone,

utility meter reading, electronic mail delivery, at home education, opinion

polls, and financial transactions; the list is virtually endless. One of the

tasks of this study was to examine as many potential applications as possible

and identify those that are the most promising.

With these applications as a focal point, the main thrust of this

feasibility study was to:

I) determine the requirements of a satellite system to serve

these applications,

2) propose the design of both the space and ground segments,

3) identify those areas of the design which are constrained

technologically, and
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Table I-I

Fixed-Satellite Service Allocations

BAND

6

7

8

11

12

FREQUENCY RANGE (GHz)

2.5-2.535

2•535-2.655

2•655-2.690

3.4-4.2

4.5-4.8

5.725-5.85

5.85-7.075

7.25-7.75

7.9-8.4

10.7-11.7

11.7-I 2.3

12.5-12.7

1 2.7-I 2.75

RESTRICTION

In, 2d, 3d

In, 2d, 3n

In, 2b, 3u

d

d

lu, 2n, 3n

u

d

u

Ib*, 2d, 3d,

In, 2d, 3n

Ib, 2n, 3d

lb, 2u, 3d

14
1 2.75-1 3.25 u

14.0-1 4.5 u

!4.5-!4.8 u*

17.3-17.7 u*

20 17.7-18.1 b*18.1-21 .2 d

30

27.0-27•5 ln, 2u', 3u"

27.5-31.0 u

37.5-40.5 d

42.5-43.5 u

47.2-49.2 u*

49.2-50.2 u

50.4-51.4 u

71-74 u

74-75.5 u

81-84 d

92-95 u

102-105 d

149-164 d

202-21 7 u

231-241 d

265-275 u

* uplink limited to Broadcasting Satellite Service (BSS) feeder links

• intended for but not limited to BSS feeder links

KEY: I Region I n

2 Region 2 u

3 Region 3 d

b

Not Allocated

Uplink (earth to space)

Downlink (space to earth)

Bidirectional
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4) estimate the potential subscriber base that could be served by

such a system.

These results should assist the Jet Propulsion Laboratory (JPL) and NASA in

determining whether this is a viable area for further study and what tech-

nologies in particular on which to concentrate.

1.2 POTENTIAL SOLUTION

Our study has identified those techniques which we view as the most

promising candidates in providing a feasible direct-to-subscriber FSS system.

This system includes:

I) Two types of earth stations to serve the end users and service

providers;

2) Relatively inexpensive single channel user terminals which

interface to a personal computer, consisting of 2.5 foot

(0.8 m) dish antennas, 500°K low noise amplifiers (LNAs), one

to five watt high power amplifiers (HPAs), and rate I/2

convolutional encoders;

3) More expensive supplier terminals with multiple channel capa-

city, consisting of 17 foot (5.3 m) dish antennas, 400 ° LNAs,

and 50 watt HPAs;

4) Either Modified Pure ALOHA or spread spectrum multiple access

schemes for the user terminals to minimize their timing and

control functions;

5) Straight TDMA at the supplier terminals to make efficient use

of the spectrum;

6) A pilot tone transmitted through the satellite to achieve

better frequency accuracy at a lower terminal cost;

7) Multiple spot beams on both the uplink and downlink to the

user terminals to compensate for their small antennas;

8) One CONUS beam to the supplier terminals so that beam to beam

routing is not required;

9) Separate TWTAs in the satellite for each channel of traffic to

compensate for rain attenuated signals and to permit saturated

operation;

10) Signal regeneration by the satellite of supplier traffic to

the wettest climate region; and

11) Public key techniques to provide the required privacy and user

authentication.
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This proposed system would be capable of providing 0.995
availability to 1 million users and several hundred service providers of low

and medium data rate applications.

1.3 STUDY CONCLUSIONS

1.3.1 Applications

After sorting and evaluating hundreds of potential applications of

this direct-to-subscriber FSS (see Figure I-I), SIGNATRON and its market

consultants, W.T. Chen & Co., Inc. (WTC), concluded that three market segments

were the most promising:

I) Home banking/finance,

2) Home shopping, and

3) Consumer electronics.

The banking and finance applications dealt with making financial transactions

(transfer between accounts, pay bills, buy and sell stock, etc.) via a home

computer interfaced to the user terminal. Home shopping, in this context,

does not refer to the same type of shop-at-home services that currently appear

on cable television, but rather represents the interactive examination and

buying process of user specified products from hundreds of retail companies.

Finally, the consumer electronics segment does not refer to specific end user

applications, per se, but instead deals with the market forces which have

brought the personal computer (PC), video cassette recorder (VCR), and tele-

vision receive only (TVRO) equipment into our homes. _nese forces will soon

be introducing high resolution TVs, digital audio tapes, and smart homes which

integrate many of these audio/visual products.

A market analysis of these potential applications concluded that

the home banking/finance application had the most promise for market

acceptance in the 1995 time frame. The estimated market potential for this

area of direct to subscriber applications was 1.75 million users. It should

be noted that this estimate presumed that many interrelated requirements were

fulfilled prior to this time period. These include the further research and

development of Ka-band components so that the terminals contain only mature

technology; that government regulations involving financial transactions be

properly addressed, and if needed, changed; and that existing companies or

entrepreneurs will innovatively package and market the services to be

attractive to both service providers and consumers. If any one of these

requirements is not met by the mid-1990s, then the introduction of the Ka-band

direct to subscriber services will be pushed into the next century. In an

historical perspective, it is likely that some delay would occur resulting in

a late 1990s (or beyond) introduction of these services.

1.3.2 System Design

From the start of this study effort, SIGNATRON believed that the

satellite and overall system architecture were the critical parts in creating

a feasible FSS design. This was because the user terminals had to be simple

and relatively inexpensive in order to be successful. Therefore the satellite
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and system architecture had to be selected carefully so that the space segment

did not become prohibitively complex.

With the help of JPL, we feel that this goal has been accomplished.

Several system components stand out as being significant in their contribution

to a viable'design. First, the applications lent themselves to a hub/spoke

network architecture. This allowed us to eliminate the user-to-user link from

the design and instead to propose two separate terminal designs: a simpler

user terminal and a more complex ground station for the service providers.

This also greatly simplified the satellite design since routing between users

was no longer required. Second, either Pure ALOHA into one of several FDMA

channels per beam or Spread Spectrum Multiple Access (SSMA) is recommended for

the user terminals' access scheme. Both of these approaches allow the traffic

in each beam to be variable (simply add more channels or bandwidth to accom-

modate more traffic) and individual small TWTAs can be dedicated to each

channel and run at saturation. This TWT approach also provides for rain

compensation as more powerful tubes can be allocated to those beams destined

for wetter climates and attenuated uplink signals can be amplified to the

fullest extent possible (not limited by a stronger adjacent signal amplified

by the same tube). The choice between Pure ALOHA and SSMA is not clear at

this time since further research is needed into several terminal RF components

which are key to one or the other of these access schemes.

1.3.3 Key Terminal Technologies

This study has identified several areas where further research is

required before the technology is sufficiently mature for a consumer market.

In particular, these include the RF portions of the user terminal -- the low

noise amplifier (LNA), high power amplifier (HPA), frequency reference

components, and large array antennas. Because these components have not been

produced in large quantities, they are currently prohibitively expensive.

More research into their production is required to enable the costs to drop.

Although the array antennas are not required for their performance --

conventional dish antennas would provide adequate gains -- we feel that

consumer preference and local restrictions would not tolerate large (6 ft)

dishes and that flat, roof-top array antennas would lead to a much more

palatable system.

Figure I-2 presents a block diagram of the user terminal design.

1.3.4 Space Seqment Developments

In contrast to the user terminals, the space segment can afford to

be complex and costly. A simple bent pipe transponder with CONUS beams is

totally inadequate given the task of linking small terminals in an environment

of up to 30 dB of rain attenuation (combined uplink and downlink fades). This

has driven the satellite design to multiple beams, higher power, and some

signal regeneration. By making use of the traffic characteristics of the

assumed applications which consists of hub/spoke networks (the service

providers being the hubs), we have avoided the need for on-board switching and

traffic routing. A forward link takes traffic from all the suppliers in a

CONUS beam, and by simple frequency translation, divides the traffic into its

destination spot beams. Conversely, a backhaul link funnels all the uplink
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spot beam traffic from the users into the CONUS downlink to the suppliers.

Again, simple frequency translation is employed. This frequency plan is

illustrated in Figure I-3. In this figure, M is the number of spot beams and

N is the number of unique frequency patterns used. The frequency reuse factor

is therefore M/N.

Because of this design, the areas which will push technology are

the multibeam feed and the power requirement. Although multibeam satellites

have already been designed and built, further maturation of this technology

will be necessary to support a 32 beam design. The prime power requirement of

this satellite is over 5 kW, significantly greater than any previous commer-

cial satellite built to date. This will stress all areas of power generation

including the solar cells, the DC to RF conversion process, and the TWT effi-

ciencies. In addition, this high power requirement also leads to a heavy

payload. More than one satellite may be required.

1.3.5 Recommendations

We have concluded that a significant market could exist for direct-

to-subscriber FSS and therefore recommend that the terminal and satellite

technologies listed above should be pursued by NASA. Since only a maturation

of existing technology is required in order to implement this system, we also

feel that the logical next step is the planning and design of a proof-of-

concept system. This experimental system would be a scaled down version of

our recommended system with fewer beams s less coverage, lower availability,

and less capacity. Ku-band should be examined as a possible lower cost

alternative to Ka-band, at least for the demonstration. Such an experiment

would focus technical and business interests on this area of satellite

communications and, in parallel with the technology developments, hasten its

implementation.

It may be possible to run an FSS experiment using ACTS. The

planned Micro-2 ACTS terminals have data rates as low as 56 kb/s and use FDMA

access from three stationary beams to the Microwave Switch Matrix. These

terminals could therefore be used to test both the system concept and new

technology components.

1.3.6 System Costs

Estimating costs for a consumer system when much of the technology

is still immature is at best difficult and at worst misleading. _ne

assumptions and methods used to obtain the estimates have more impact on the

costs than the components themselves. In spite of these difficulties, we feel

that the user terminal cost could come down from their present $30,000 to

$45,000 costs to a more reasonable cost of several thousand dollars. A more

detailed cost estimating exercise is warranted for the satellite should this

FSS system be pursued.

1.4 ROADMAP TO REPORT

This report essentially follows the tasks of the statement of work

(SOW). The differences are that the ground and space segment block diagrams

(Task 3) were broken into separate report sections, and that the Privacy/

Security Task (Task 4) was shifted toward the end of this report.
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Following this introduction, Section 2 addresses the potential

applications and recommends those for further study. WTC assisted SIGNATRON

in making these evaluations. Section 3 examines the system requirements of a

direct-to-subscriber FSS system including the topics of frequency stability,

multiple access, signal structure, and multiple satellite beams. The terminal

design and components are evaluated in Section 4 while the satellite design is

discussed in Section 5. Section 6 finally puts the system together by

proposing a strawman system design, calculating the link budgets, and then

performing trade-offs among various satellite and terminal alternatives to

obtain the necessary link margins. Section 7 summarizes the technology

constraints and cost drivers of this system while Section 8 addresses the

privacy/security issues of the various applications and how to incorporate

these requirements in the system design. Finally, Section 9 presents the

market analysis of the three applications selected in Section 2. _nis

analysis, performed by WTC, estimates the potential subscriber base of these

applications by the mid-1990s and recommends the most promising application on

which to concentrate.
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SECTION 2

FIXED SATELLITE SERVICES APPLICATIONS

This section summarizes the potential applications considered for

the FSS. The applications examined are those listed in the SOW and the

Proposal, with additional applications that were suggested by JPL, SIGNATRON,

and WTC during the course of the study. These applications are defined and

sorted into a hierarchical tree structure based loosely on the communications

requirements of the various applications. Applications which are out of scope

for the study are eliminated, and the remaining applications are then evalu-

ated with respect to technology requirements, direct-to-subscriber suitabil-

ity, potential demand, and current competitive situation. Promising appli-

cations will be selected and grouped based on common system requirements, and

potential users then defined. Finally, a few of the most promising applica-

tions will be focused on in order to evaluate the market potential.

2.1 LIST OF POTENTIAL SERVICES

Over 100 potential applications were identified during the proposal

and study, many of which were similar, overlapped partially, or were subsets

or supersets of other applications. In order to manage this large quantity of

data, applications were sorted into a hierarchical grouping based along the

lines of previous studies of market demand for satellite communications. We

have used esssentially the same groupings as [Stevenson, et al., 1984] with

some combining and rearranging of categories.

The possible satellite communications services are divided into

three major categories: voice, data, and video. Each of the major categories

is divided into a number of sub-categories. The resulting sorted list of

applications can be illustrated in a tree structure as in Figure 2-I, where

applications originally identified in the SOW and proposal have been under-

lined.

In the following paragraphs we define each of these groups of

applications, and eliminate groups of applications that are clearly out of

scope for this study.

2.1 .I Data Services

The first major category of services, Data, contains the majority

of the applications investigated. These applications are subdivided into

three categories: Terminal/CPU, CPU/CPU, and Message, with further groupings

in each of these three categories.

2.1.1.1 Terminal/CPU

Terminal/CPU applications are those involving the transfer of data

between remote terminals and centralized computers. A variety of subclasses

for this type of data transfer have been identified and are summarized in

Table 2-1.

The Data Entry class of applications are those providing for remote

entry of data into a centralized data base via a general purpose or applica-

tion unique terminal. Typical uses include electronic funds transfer and data

base update, where operators manually enter information into the system.
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The General group of applications are those where remote terminals

are used for interactive timesharing or remote job entry. Users are typically

large institutions and businesses which have distributed computing resources

or buy computer time at remote locations. Examples of this type of applica-

tion include _ TELNET, TYMNET, and ARPANET which provide for remote access into

computer networks.

Inquiry/Response applications are those requiring real-time

interaction with a database by a remote operator. Typical examples of this

type of application are the networks for making airplane, car, and hotel

reservations. Other uses would include obtaining stock quotations, checking

inventory status, etc.

The Point of Sale applications are those where intelligent sales

terminals enter charge, check, and debit card transactions directly into a

banking system or perform automatic credit checking, deposit, and inventory

regulation.

Videotext/Teletext services provide for the interactive transmis-

sion and display of "frames" of information retrieved from a database.

Although these terms have come to be used generically, teletext refers

specifically to the transmission via broadcast TV or cable, and is essentially

a non-interactive service; videotext refers to transmission via telephone and

provides for interactive services. Services offered through videotext/tele-

text systems range from simple continuously updated news/weather information

to interactive bank-at-home (telebanking) and shop-at-home (teleshopping)

services. Although these systems were originally targeted at consumers, much

business use has been made of videotext, particularly of services providing

financial information, electronic mailboxes, and other specialized services.

Telemonitoring is the final grouping of services in the Terminal/

CPU category, and includes those applications providing for the electronic

monitoring of the status or condition of remote devices from a central

location. Examples of telemonitoring systems are many, and include such

systems as automated weather/environmental reporting and burglar/fire alarm

systems.

2.1.1.2 CPU/CPU

CPU/CPU applications are those where the communications are

entirely between computers. This category is broken into two categories:

Data Transfer and Batch. Both categories have essentially the same system

requirements, the primary difference being in the type of availability/access

to a communication channel that is required. This category is summarized in

Table 2-2.

Data Transfer applications are those requiring high speed transfer

of data between computers on a demand basis. This would encompass such uses as

distributed processing systems, distributed data bases that must be kept up-

to-date in a real-time sense, and any other application requiring high volume

data transfer with little time delay.

Batch Applications operate on a more scheduled basis, and would

include such uses as transferring weekly payroll information, daily sales

orders, etc. Because of its scheduled nature, Batch does not result in high
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peak loads or very low duty cycle demands being placed on the communications

network.

2.1.1.3 Message

The final category of Data services are the Message based services.

This category is distinguished from the previous two in that messages are

person-to-person in nature, rather than being originated by and/or delivered

to a computer system. This category is divided into four groups as summarized

in Table 2-3.

Electronic-mail (E-mail) provides for the point-to-point transmis-

sion of formal text in a manner analogous to first class mail. Moderate delay

(hours or overnight) in delivering E-mail is acceptable. Note that E-mail is

different than the electronic mailbox services offered on videotext systems.

In an electronic mailbox system, the user must log into the network and check

his mailbox to see if there is anything for him, whereas with electronic mail,

the message is delivered directly to the user.

Administrative traffic is generally short person-to-person messages

of an informal nature, requiring fairly rapid delivery (i.e., within the

hour). Examples of applications in this group include communicating word

processor systems, distributing product announcements, travel reports, field

marketing reports, etc.

The Record services group contains applications which provide the

transfer of highly formalized written information such as the TWX, Telex,

Telegram, Money Order, etc.

The last group of applications is Facsimile ("FAX"), which provides

for the transmission of document reproductions. Approximately 86 percent of

the FAX machines in use are the "convenience" facsimile which operate over

normal telephone lines [Kratochvil, et al., 1983]. The remaining 14 percent

of FAX machines in use are "operational" FAX (which use higher data rates and

leased lines) and special purpose wideband FAX such as for high resolution

weather maps and police fingerprints.

2.1.2 Video Services

The second major category of applications is video. Video is

broken into two categories, Videoconferencing and Broadcast. Unlike the data

services which generally require data rates below 64 kB/s, video information

requires very high bandwidths. Bandwidth requirements range from 4.5 MHz for

analog video channels to 27 MHz for digital television (at 54 Mb/s) [Habibi,

1977]. Lower bandwidth data rate requirements can be achieved using motion

compensation, compression, and slow scan TV. Because the scope of this study

was limited to low/medium data rates, only bandwidth limited video was

considered.

2.1.2.1 Videoconferencing

Teleconferencing provides for either point-to-point or point-to-

multipoint limited distribution of video information. Both one and two-way

communication links are used. These applications would include videocon-

ferencing aimed at businesses, picturephones which provide telephone plus

video, at-home education and telemedicine.
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2.1.2.2 Broadcast

Broadcast provides for the essentially unlimited distribution of

video information. Because of the wide audience intended for broadcast

applications, standard video formats are used. As normal video does not fall

into the class of low/medium data rates, this entire grouping was viewed as

out-of-scope for the study effort and was not considered further.

2.1.3 Voice Systems

The last of the three major categories covers voice systems, which

includes two categories: Telephone and Radio.

2 •I . 3. I Telephone

Telephone services are divided into three groups : Switched

Residential, Switched Business, and Dedicated/Other, as summarized in Table

2-4.

Switched Residential telephone includes, in addition to normal

telephone service, rural telephone service via satellite where no service is

currently available.

Switched Business telephone includes, in addition to normal

telephone service, portable and remote telephone.

Dedicated/Other is a catch-all grouping and includes dedicated

lines, private switching systems, and direct access to the switching system at

the trunk level (bypassing local switches).

2.1.3.2 Radio

The radio category encompases the distribution of broadcast quality

audio. Most radio requires 50 to 60 kHz bandwidth, and is usually distributed

via subcarriers "piggy-backed" on satellite video links, with a small portion

going via terrestrial leased lines. Since the bulk of this category does not

fall into the class of low/medium data rates, this entire category was also

viewed as out-of-scope for the study effort and was not considered further.

2.2 TECHNOLOGY, DEMAND AND COMPETITIVE EVALUATION

Of the original listing, five of the seven categories of applica-

tions; Terminal/CPU, CPU/CPU and Message oriented Data services, Videocon-

ferencing services, and Telephone services; were deemed within the scope of

the study and were evaluated with respect to their feasibility, demand, and

competition.

The purpose of this evaluation was to select only applications that

are feasible within the realm of this study, had a significant demand, and

were not being addressed by other development programs.

Feasible applications were those that (1) a low cost terminal could

be possible - i.e., complex or expensive interfacing would not be required,

(2) require only low or medium data rates as specified in the SOW, and (3) are

appropriate for an on-premises terminal.
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Demand was evaluated based on a combination of market studies done

recently for NASA [Gamble, et al., 1983], [Kratochvil, et al., 1983], and

information collected from a variety of sources during the course of the

study. Many new applications appear to have become possible since the studies

done in 1983, largely because of the large interest in and effort being

expended in the development of Very Small Aperture Terminals (VSATs) in the

last few years [AWST, 1986a].

Competition was also addressed during the early part of the study,

not for the purpose of evaluating overall market potential, but to eliminate

those applications that overlapped other development efforts. We wish to

propose new ideas and approaches rather than re-invent existing concepts.

A large number of systems providing similar or related services to

those proposed for this study were reviewed in order to gain a feel for the

current situation with respect to the demand and competition for various

services. Table 2-5 presents a summary of the different systems examined.

Based on the evaluation of each application group with respect to

these criteria, many of the applications were eliminated, and the remaining

applications were rated as either primary or secondary. Primary applications

are those with the greatest potential and should be provided by the system.

Hence primary applications determine the system requirements. Secondary

applications are those that have potential, but due to either limited demand,

technical problems, or extensive competition are not "sure winners".

Secondary applications are to be accommodated by the system design only to the

extent possible without them becoming drivers from either a cost or

technological standpoint.

In the following paragraphs each applications group is evaluated

with respect to these criteria.

2.2.1 Data

Data Services are by far the most promising applications identified

for a direct-to-subscriber low/medium data rate system. Almost all of the

data services were ranked as either primary or secondary applications.

2.2.1.1 Terminal/CPU

All of the Terminal/CPU groups are considered appropriate for a

direct-to-subscriber system. _'ne very nature of the systems is where large

numbers of remote terminals access a central computer or database. Therefore,

there is a need to provide many low data rate communications links from a

large number of separate locations.

The terrestrial telephone network currently addresses these

requirements quite adequately, and generally most of these applications use

telephone lines, although Teletext is offered via broadcast TV and Cable, and

Telemonitoring is also done via radio/satellite links.

For applications currently using telephone lines (both switched and

dedicated) the need for more economical communications exists. As satellite

technology becomes less and less expensive, the distance at which satellite

links become cheaper than terrestrial links is becoming shorter. A large

portion of the Terminal/CPU traffic already travels distances which have

passed the breakeven point.
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There is some competition to provide these types of services

however, as manufacturers have begun to market Ku-bana VSATs to address some

of these applications. However, current VSATs are generally targeted at

higher data rates, and are targeted at business markets, not consumer markets,

and are thus quite expensive.

The overall evaluation of the groups in this application is

illustrated in Table 2-6. All applications were viewed as appropriate for the

study, as they are ideal for on-premise terminals, could (with some limita-

tions) potentially be accommodated by low cost terminals, and required only

fairly low data rates.

Figure 2-2 shows a histogram of the data rates required for the

total Data demand (including also CPU/CPU and Message services) based on user

surveys done by [Kratochvil, et al., 1984]. As can be seen from this table,

the majority of the applications require data rates of 9.6 kb/s or less. For

Terminal/CPU applications, the only group requiring data rates of greater than

9.6 kb/s was Remote Data Entry. Thus, the system design can be limited to

9.6 kb/s or less and still address a large percentage of the demand for these

applications.

In Table 2-6, the demand for each application is also ranked. The

Data entry group represents the highest demand, and Telemonitoring was the

lowest. Point of Sale was one area where very large growth was predicted.

Currently, only about 6 percent of all charqe authorization/deposits are done

automatically; it is expected by the year 2000 that nearly 100 percent of

these transactions will be processed automatically [Kratochvil, et al., 1983].

Videotext/Teletext is an uncertain area, as many businesses have

been unsuccessful in providing these services in a local market area and have

dropped out of the business. A second wave of ventures has now started with

several large consortia intending to provide national services. For the

Videotext/ Teletext application it was assumed that an essentially ASCII based

service would be provided rather than using the NAPLPS standard, a complicated

graphics based system used by some Videotext systems. The most successful

systems currently are ASCII based, while the graphics based systems, using the

NAPLPS standard, have suffered rather poor acceptance [Stapleton, 1986]. In

addition, the need for a NAPLPS decoder would also add between $300 and $700

(1986 dollars) to the cost of the terminal.

The demand for videotex services is quite large. In the United

States, national videotext systems currently have over 400 thousand subscrib-

ers. France, which has subsidized the system by having the government give

away approximately a million terminals, has over 1.5M users of their national

system. However, West Germany and Britain (which require users to purchase

terminals) have been only marginally successful with approximately 40 thousand

and 63 thousand subscribers, respectively [Fletcher, 1985]. Providing video-

text-teletext type services via satellite is thus a primary application for

this study.

Telemonitoring, from a technical viewpoint, is a perfect applica-

tion for a small on-premises terminal envisioned by this study. However, it

is an area with a considerably smaller demand than the other classes. Current

techniques used are to send data via phone lines where available, or via HF,
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VHF, or UHF, where phone lines are unavailable. Most telemonitoring users are

businesses and the cost of the terminal is not as large an issue as it is for

consumers. The recently available Ku-band VSATs have done much to address the

demand in this area. Two applications in this group, however, are targeted at

consumers: _home security and utility meter reading, but only represent a

small fraction of the telemonitoring demand. Because of the fairly low demand

predicted in this area and the large activity in providing VSATs for this

group of applications, it was ranked as secondary.

2.2.1.2 CPU/CPU

The overall assessment of CPU/CPU services is summarized in Table

2-7. Although these applications were acceptable with resDect to the poten-

tial for low cost terminals and were also well suited to customer-premises

terminals, we decided not to consider these applications for a number of

reasons. As the CPU/CPU services require data rates from 56 kb/s up to TI

(1.544 Mb/s) rates, only a portion of these services fall into the realm of

low/medium data rates. Furthermore, many different companies are attempting

to address this demand with VSAT development efforts [AWST, 1986a]. _ne ACTS

program is also investigating providing data communications services for

customer-premises small aperture terminals. As only a portion of the CPU/CPU

applications fall into the scope of our study, and are being addessed in whole

by other programs, they were not considered further by this study.

2.2.1.3 Message

The groups in the category of Message based services varied widely

in how they ranked with respect to the evaluation criteria as summarized in

Table 2-8.

Although the Electronic-Mail application can be handled well via

Ka-band CPS, it suffers from one major problem: origination and delivery of

mail to users who do not have terminals. Once this problem is solved, the use

of such a system could become quite extensive. However, potential competition

from the USPS, Federal Express, and other organizations which have well in-

place terrestrial delivery systems will make it difficult to achieve a foot-

hold in this market. The USPS even abandoned its attempts to provide an

Electronic-mail system, the USPS Electronic Mail Switching System, due to poor

acceptance [Stevenson, et al., 1984]. Because of these kinds of logistical

(rather than technical) problems, Electronic-mail was ranked as a secondary

application.

Administrative services were applications that although currently

little used, ranked very high in the demand forecasts. This is an area where

little research has been done into the needs of the users and how to provide

for these needs. Overall, these applications ranked second in channel usage

among the data category, and hence are considered primary applications for

this study.

Record services were eliminated from consideration because of their

very low demand (last place). New technologies such as overnight mail,

Electronic mail, and direct CPU/CPU data transfer are replacing most of these

services.
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For Facsimile, a large portion of the demand can be addressed by a

low/medium data rate communications link. There are some problems associated

with cost, however as the terminal will require the facsimile scanner.

Federal Express started a facsimile service (Zap-Mail) which provided high

quality facsimile service via satellite [Ott, 1986]. After losing millions of

dollars, they cancelled the service after only two years [AWST, 1986c]. The

service was unsuccessful for a number of reasons, one of which was the

availability of new, high performance, low cost, telephone facsimile

machines. In light of these developments, this application was eliminated

from further consideration.

2.2.2 Video

The only video applications under consideration were those that

could use bandwidth compression techniques to lower the required data rate.

These were applications such as videoconferencing aimed at businesses, pic-

turephones which could provide telephone plus video, at-home education, and

telemedicine.

These applications fail to meet the low cost criteria, however, as

in all cases, fairly complicated equipment is required in order to achieve the

required amount of compression. Video compression is still an active area of

research and development, and it seems unlikely that widespread use of video

compression will occur in time to make the required hardware economical.

Furthermore, we feel it is likely that the ever-decreasing cost of bandwidth

is likely to continue to beat out the cost of bandwidth compression, and most

systems will continue to use full-motion, uncompressed video.

2.2.3 Voice

The voice applications that are under consideration are a limited

subset of the overall voice communication market. The specific applications

under consideration and their evaluations are summarized in Table 2-9.

Remote or thin-route telephone service was initially viewed as one

of the most promising applications for the 30/20 GHz FSS. This is because

there is currently no service provided for this market. However, in the

future, competition can be expected from services such as mobile satellite and

other primarily business-oriented system. Potential users would include rural

areas, off-shore oil rigs, and users needing portable field communications

capability.

2.2.3.1 Switched Residential - Rural Telephone

The demand for rural telephone is not known, as there are no

systems currently providing this type of service. Some idea of how this

market could grow, however can be gained from the wide acceptance of the

Television Receive Only (TVRO) satellite systems, which were originally

targeted at Rural areas that did not receive television. Over 1.5 million

TVRO systems have been sold, although not all sales have been to rural users

[Doherty, 1986].

A possibility for the mobile satellite service to provide communi-

cations for this type of application exists. Although the mobile satellite

(MSAT) systems are intended for mobile users, these systems could certainly
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accommodate a fixed user in a remote area. The MSAT systems, however, are

targeted primarily at business users, and thus may not be priced low enough to

attract consumers.

Due to this uncertainty and the possibility of the MSAT Systems

accommodating remote rural users, this application was ranked as secondary.

2.2.3.2 Switched Business - Portable/Remote Telephone

The need for portable and remote telephones targeted at business is

an application already being addressed by a number of companies which have

either built or announced plans to build portable telephones that operate via

satellite [Stephens, 1986].

These needs could also be met to some degree by the MSAT systems.

In light of the number of options already available to address this applica-

tion, these applications were not considered further.

2.2.3.3 Dedicated/Other

For both long haul private links, and direct "bypass" trunk access,

there is large competition to capture these markets. The ACTS program is also

targeted at this type of application. Therefore, these applications were not

considered further as they are already being addressed by other development

efforts.

2.2.4 Summary of Applications Selected for Consideration

In summary, of the original thirty groups of applications, nine

were deemed to be appropriate for the type of system to be examined during

this study. These applications are summarized in Table 2-10.

2.3 END-USER IDENTIFICATION AND APPLICATIONS GROUPING

After having made a preliminary investigation of the potential

applications and selecting a set of the more promising applications, the end-

user requirements were then examined. From the applications characteristics

and user requirements, requisite system requirements were then defined which

would allow the system to support the selected applications. Table 2-11

provides a cross reference of the potential applications to the various end-

user markets.

2.3.1 Consumer Oriented Services

Consumer services are those applications targeted at the residen-

tial consumer. These would be applications where the home user would interact

with either other users, or providers of services via the satellite system.

Consumer end-users are the primary target of this feasibility study. Most of

the suggestions in the SOW were for consumer videotext type services; over-

night news, overnight mail, and electronic banking.

2.3.1.1 Consumer Users

All of the applications suggested in the SOW are currently avail-

able via terrestrial phone or cable, with the exception of automatic utility

meter reading. However, few of the services are integrated. For example,
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Table 2-I 0

Summary of Primary and Secondary Applications

DATA

Terminal/CPU Applications:

Data Entry

General

Inquiry/Response

Point of Sale

Videotext/Teletext

Telemonitoring (Secondary)

Message Applications:

Electronic Mail (Secondary)

Administrative

VOICE

Telephone:

Switched Residential - Rural Telephone (Secondary)
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there are three successful national suppliers of videotext, but each service

provides different features. Accessing more than one service requires sub-

scribing to each system, dialing up the system separately, and using different

access procedures.

An integrated system providing a number of features could have much

more appeal to the consumer. However, it is likely that the service will be

bought on the basis of one or two applications. Electronic banking is an

application that seems to have this appeal, as the number of subscribers to

home banking, while still only 65,000 in the US, has risen threefold to

fourfold in the last year [Fletcher, 1985].

It is important that the system be interactive in order to provide

services, such as electronic banking, which require two-way communications.

Although the original videotext offerings were primarily informational (and

thus essentially non-interactive), there was little demand for these types of

services. Consumers were far more interested in interactive services such as

bulletin boards, electronic messaging, and transactional services (such as

electronic banking) [Fletcher, 1985].

Targetting the services at users who already have a PC makes good

sense. Over 33 million PCs have been sold to both businesses and consumers.

Currently 16 million PCs are installed in households, representing a sizeable

potential market. In addition, PC owners will already feel comfortable with

the prospect of interacting with the system and conducting transactions

electronically.

Of utmost importance with a consumer targeted application is the

overall cost of the service. Acceptance of the system will be highly

dependent on both the cost of the terminal (either purchase price or leasing

cost), and the cost for monthly access.

2.3.1.2 System Requirements for Consumer Applications

The applications of interest to consumers included primarily data

oriented services, with the exception of rural telephone, which is discussed

in a later section.

The consumer applications have the need for the transfer of text

and graphics, with high quality facsimile, voice and video being unneeded.

Graphics can be accommodated by a number of means, using either the existing

NAPLPS protocol, GKS standards, local generation of graphics, or other means.

The services will need to be provided by supplier "superterminals"

which will communicate with a large number of subscribers simultaneously.

Thus, each supplier terminal will become the "hub" of a star network. Many

different hubs supplying a variety of services will ultimately exist. For

example, there may be a number of banks which provide for electronic banking

services via the network, but only a single national electronic message board.

As far as channel utilization is concerned, it is quite low due to

the bursty nature of the links. Basically two sorts of transmissions exist:

fairly short interactive messages (prompts, inquiries, etc.) and longer data

messages (bulletin board announcements, data base records, etc.) Short trans-

missions occur quite frequently (every few seconds) and require fairly low

delays (less than a second). Longer transmissions occur less frequently (a

few per day) and can tolerate moderate delays (tens of seconds or several

minutes) [Rosner, 1982].
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A bursty factor [Lam, 1978] can be defined as
6

8=--
T

where 6 is the message delay constraint, and T is the average message inter-

arrival time. For these applications, 8 is on the order of 0.1 for inter-

active traffic, and 0.01 for longer data messages. This bursty factor is

essentially an upper bound on the duty cycle of the traffic source. For

sources with very small bursty factors, some sort of multiplexing or message

switching is clearly desirable.

Data rate requirements for the most part are quite low, as most of

the information being passed back and forth will be either manually typed or

read by the user. Data rates of less than 9.6 kb/s can easily accommodate

such uses and meet the delay constraints. However, in some applications,

transfer of moderate volumes of data may occur, such as downloading of soft-

ware. Thus, the ability to operate at higher data rates on some links would

be desirable.

The use of a personal computer as the terminal places limitations

on the maximum allowable data rate. Many existing PC data transfer applica-

tions (Kermit, X-modem, etc.) are able to pass data at the 9600 baud rate, but

there are virtually no applications using higher rates.

The data formats to be used will vary somewhat, although ASCII will

clearly be predominant. For all the consumer applications except telemoni-

toring (home security, utility meter reading) ASCII will be used. However,

graphics capability not provided by ASCII may be required for some applica-

tions in addition to ASCII text. For example, graphics will be needed to

reproduce pictures, company logos, etc. for teleshopping, news and weather,

and games. Telemonitoring applications are not tied to ASCII because the

information transferred is not textual. This information would be strictly

binary, although it could be handled by the terminal in an identical manner to

ASCII without unduly contraining the telemonitoring applications.

Some security and privacy features are necessary, both for the

protection of information such as account numbers, passwords, or credit card

numbers, and to ensure privacy for the users conducting transactions via the

network.

The system availability should be at least as good as the terres-

trial telephone system, as users are accustomed to that level of availabil-

ity. It is likely that the usage of the system will have the same sort of

peak usage characteristics as telephone switching systems, although possibly

at different times.

Reliability (accuracy) of data transfer is also of concern.

Terrestrial telephone lines can be quite poor in this respect, especially with

respect to the typical cheap microcomputer modem. Considerably better capa-

bility should be possible with the satellite network. The degree of accuracy

required varies with the application. For transfers of software, Electronic

mail, etc. very high accuracy is necessary. However, for much of the inter-

active transfers (prompts, news briefs, etc.) a slightly lower reliability is

acceptable. Bit error rates of 10 -5 result in errors every 10 seconds at 9600

baud, which is probably the limit of acceptability for purely interactive

communications links. For data transfer requiring higher accuracy, bit error

rates of 10 -8 or less should be provided.

2-25



A summary of the system parameters for the various applications

targeted at consumers is shown in Table 2-12.

2.3.2 Business Oriented Services

Another promising area is the possibility of providing communica-

tions services to businesses, government, or public organizations. Some Of

the previously described consumer services have appeal to business also. In

addition, increasing numbers of corporations are finding the need to conduct

transactions and transfer information electronically. Extensive use is made

of dedicated and leased lines currently, although the potential exists to move

these links to satellite and obtain a reduction in cost.

2.3.2.1 Business Users

Business needs cover a wider ground than consumer needs. Although

businesses, like the consumer, need access to the types of informational

services provided via teletext, they have greater needs in providing for

intra-company and inter-company transfer of information electronically.

Currently when faced with the need for providing additional commun-

ications capability, companies have few options: either lease dedicated

telephone lines, use the switched telephone network, or install specialized

communications links (microwave, HF/VHF/UHF radio, or satellite). Use of

leased or switched telephone lines has generally been the preferred option,

primarily due to cost. However, the cost of leasing satellite links has come

down to the point that it is often cheaper in many cases to maintain satellite

links. Costs of terrestrial links continue to increase, while advances in

satellite technology have continued to reduce costs associated with satellite

links. This is reflected in the break-even points (the point were the

satellite links are equivalent in cost to terrestrial telephone) becoming

shorter and shorter. Currently, break-even points are in the range of 1000

miles.

2.3.2.2 System Requirements for Business Applications

The business applications can largely be divided into two cate-

gories: consumer-like Business Services, and Business Communications.

Business Services are those where the satellite system is used just to get

access to a service supplier, exactly as for the consumer applications

described previously. The Business Communications applications are those

where an essentially custom communications network is needed by the business.

The major difference between the consumer services and business

services are the type of service provided. The satellite communications

network operates identically, and the system requirements have been adequately

described above for the consumer applications.
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The business communications applications under consideration in
this study have the need for the transfer of data exclusively. In other
respects, however, the needs vary considerably depending on the end-user's
particular application.

Unlike the service applications, which resulted in a numberof star
networks with each service provider as a hub, the communications applications
will probably need a variety of connectivity options. For example, for the
Terminal/CPU category of applications, a star network will be used, where the
CPUis the hub. However, for the Electronic Mail or Administrative traffic,
point-to-point communications is ultimately desired. This could still be
provided via a hub, but would require a two-hop transfer to get the data from
point-to-point. Due to routing considerations, two-hop networks are often
required anyway.

A variety of data rate requirements are needed, depending upon the
applicaton. The bulk of the applications can use data rates lower than
9.6 kb/s although a few need higher data rates, particularly for Data Entry.
Administrative traffic can also require high data rates, as transfer of large
volumes of text could be possible in a communicating word processor system.
An excellent example of this is a proposal writing activity where portions of
the proposal are being written by two widely separated divisions of a company.

The privacy and security requirements for the business world are
stringent. A fairly recent concern over the susceptibility of communications
has surfaced in the last few years. As more and more sensitive information is
transmitted via essentially unsecure communications links, the likelihood of
financial loss increases. Financial loss could occur due to either the
destruction or modification of information being sent over a link, or use
being madeof private, sensitive information.

Although Congress has recently tightened up the laws concerning
communications privacy, these laws do little to discourage the determined
eavesdropper. For communications via satellite it is virtually impossible to
detect an evesdropper anyway. Therefore, we see an insistence on the part of
businesses that secure communications links be provided. By providing such
security inherently in the system design, rather than placing the burden upon
the user (as is currently the case for terrestrial and satellite links), the
system proposed by this study could find considerable acceptance.

The required system availability is a function of the applica-
tions. Applications such as Data Flntry, General, Inquiry/Response, Point of
Sale, and Administrative need very high levels of availability. Downtime
could represent loss of sales to a merchant using the system to provide Point-
of-Sale automated charge verification/deposit. The system availability must
be as good or better than that of the current telephone system.

Reliability of data transfer is of the utmost importance. Large
volumes of data will ultimately be transferred, very little of which can be
checked by any other means. Even minor errors can result in major problems,
loss of data, or loss of revenue.

Of concern is also the reliability of the communications link. In
particular, for some applications there needs to be a high degree of confi-
dence that the data was received at the other end of the link. For manyof
the business application, data should be delivered with probability of fail-
ures less than 10-5 .
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A summary of the system parameters for the various applications

targeted at businesses is shown in Table 2-I 3.

2.3.3 Rural/Remote Telephone

The rural/remote telephone application is discussed separately

because the system requirements are so different from the other applications.

The interface to the user can no longer be accomplished with a PC,

but a telephone type handset is necessary. Dialing and ringing equipment is

also necessary. In order for the terminal to remain low cost, any type of

voice-coding is clearly out of the question, limiting the waveform selection

to either analog or fairly straightforward sampled digital. With digital

voice, a data rate of 64 kb/s is generally required for adequate quality.

The system must at some point interface to the public telephone

network in order for it to have any acceptance. Thus, a gateway into the

terrestrial telephone system will be required. This gateway could perform

waveform translation if the waveform selected for use in this system was

different from the standard telephone transmisson waveforms, although this

would considerably increase the overall cost of the system.

Voice results in particularly difficult system requirements as

opposed to data. This is due to the real-time nature of voice. The one-

quarter second delay due to the satellite range is already enough to bother

pl _^-_ _-- be _._A Cy_e_ schemesmost peo e. _uu_..=_ delays must _=_ ....................

that introduce additional delays, although acceptable for data transmission,

cannot be used for voice communications. This leads to the need for dedicated

channels for the transmission of voice.

A summary of the system characteristics that should be provided for

voice communications is contained in Table 2-14.

2.4 APPLICATIONS FOR MARKET ANALYSIS

Although we have narrowed down the large list of potential

applications to several general categories, these categories still include a

large number of specific applications. We have grouped these applications by

the system requirements which allow us to develop a generic system design that

can accommodate these many different applications. For the subscriber base

estimation, however, we need to focus on the specific applications, as the

market forces involved are widelM different depending upon the application.

In order to understand the forces affecting the development of particular

applications, a market perspective rather than a technological perspective

must be taken.

The direct-to-subscriber system might ultimately accommodate a

number of different services once it is operational. Large numbers of service

would not, however, become available immediately. Rather, a few key "trigger"

applications will be needed in order to provide the impetus for developing the

infrastructure necessary to support the system. Thus, we now examine the

various market forces that are expected to converge in the mid-1990s in order

to determine which applications might be the first to use this _ystem. It is

for these most promising applications that we will perform the subscriber base

estimation.

2-29



0)
.P

®

a}

-M

®

n'_ C
•- O

I .-I

@ U
,--I .r4

-,-t

II1

q4
O

..,,4

-,-t

8

-M

U

C
O

4J

O

I I
O0
I--"

V V

m _

4_
m

¢; 0

_.-I q.4 ,1=

0

I
I

CO

,P

0
0

0

0
0
0

d
7

C
.M

E

7
I

0
0

CO
I
0

0

4_
m

N

1.4

0

0
O

,.C:
U

0
0

I

.IJ

.M
E

7
I

0
0
®

I I
0 0

V V

0 m

4_

m

@ 0

0

N

C

0
0

0

0
0
@,l

I

C
.,-I

7
I

0
0

_C
_0

O0
I
0

V

0

m

® 0

O_

@

m

_)
E

0

C
0
O
0

0

7

O

0
0
v"

.lJ
D
C

.M

r-

U_

q_
0

4J
C

.M
0

CO
I
0

V

O _
4J

4J

O

N

0

C

C
0

C
0
0

0

7

U

O
O

I
O

I
I

C
C .

C
-M

O

C
0

,"4
®

CO _n
I I
0 0

V

m ,..1

c

0

I

C

&

C
0

0
..C

.C
0

0
0
0

0
0
v'-

I

,.4

0
.,-I
C
0

4_
0

CO
I
0
,p,.

O
.M
W
m

O
.M

I
I

C
0 0
O .Z::

0
0
0

0
0
0 U

0
.,4

:>

-,-I
4J

.lJ

.,=I

.M

0

b_

4U

II

®

U

3
II

.It

2-30



Table 2-14

Summary of voice Communications System Requirements

Call Frequency:

Call Duration:

Delay :

Connectivity:

Security:

Privacy:

Reliability:

Data Rate or

Bandwidth:

same as normal telephone

same as normal telephone

up to 0.1 s if digital

none if analog

multiple user to/from gateway into PSTN

yes--as necessary for billing and access restriction

no

same as normal telephone

64 kb/s if digitized

approximately 3 kHz if analog

* in addition to propagation delay
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2.4.1 Historical Perspective

New technology more often than not takes a circuitous path with

many false starts and failures, and requires decades before reaching full

market potential. Some examples of this include the automobile, airplanes,

telephones, and computers. Although all of these examples are integral parts

of our lives today, all of them nearly failed in their original introduction

due to a variety of reasons. None of these examples were in widespread use

until many years after the original development of the technology.

The automobile, for example, nearly failed due to the lack of a

proper infrastructure; there were no roads, service stations, or widely

available repair services. Tnus, before automobile sales became widespread,

this infrastructure had to be developed. Because a need for the automobile

existed, this infrastructure was eventually developed. As this infrastructure

developed, car sales increased, and new businesses were developed around this

infrastructure (i.e., the service stations, road contractors, etc.). Thus,

the whole market changed and grew.

In many cases, the finally achieved market is often different than

what had originally been expected. For example, the telephone was originally

viewed as a business tool. Business organizations would have a single

telephone in a centralized location. The telephone was not originally

intended for such widespread use as there is today, yet now hardly a home or

individual's office is without a te!ephone_

Both of these examples serve to illustrate that independently, a

new technology will usually not become exploited. There needs to exist both a

need for the technology, and an infrastructure to support the use of the

technology. Once a technology begins to enjoy widespread use, however, the

availability of the technology can result in many changes in the overall

markets. Many times, applications for the technology not originally imagined

will become widespread. An example of this is the TVRO industry.

The various market forces involved in the development of new

technologies are illustrated in Figure 2-3. These various forces are

interdependent, and work in concert to determine the success or failure of a

new technology.

We have already considered two requirements for the successful

development of new technologies; the infrastructure to support the use of the

technology, and the need or demand for that technology. Other factors that

will impact the success of the technology include competitive business

strategies and government regulations which may hinder or help the adoption of

the technology, economic considerations, and entrepreneurship. Entrepreneurs

are often critical in making a new technology viable economically.

2.4.2 Market Trends

A preliminary investigation of the market trends was conducted in

order to determine which of these forces are converging in the consumer market

place. By examining the expected areas of convergence in the mid-1990's,

direct-to-subscriber applications that seem most likely to be developed were

determined.

The forces that seem to be shaping the demand for direct-to-

subscriber communications links seem to be primarily driven by the consumer

industries. Consumer service providers are looking for new ways to reach
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their customers in order to maintain existing markets and capture new markets,

such as the dual career families and invalids who either do not have the time

or cannot physically get to the service provider's premises.

Consumers are also fueling the demand by insisting on easier access

to the services they must deal with everyday: banks, retailers, financial

services, and utilities. Changing consumer lifestyles are also a factor, as

consumers utilize more electronic gadgets at home, use computers more at work

and become more familiar with interacting with machines, rather than people.

The explosive growth in the use of automatic teller machines illustrates these

trends.

The type of communications link needed between the suppliers and

the consumers must support an interactive and transaction oriented relation-

ship. Many pilot programs are being adopted by consumer industries where they

are testinq new distribution channels such as cable television and videotext/

teletext. Unfortunately, these communications channels have a number of

shortcomings in providing the required degree of interaction desired. Since

interactive satellite links can provide the required communication link, and

may be able to do so ecconomically in the near term, the development of a

direct-to-subscriber system in the near future may be likely.

The pioneers in this area are likely to be the banking and

financial service industries and the retailers. These businesses already have

a start on developing the required infrasuLuuLuL_ _LLUU_** pilot _LV_La*._

utilizing cable television, broadcast television, and videotext/teletext

systems to provide home-shopping and home-banking services. _ne specific

applications suggested in Table 2-15 appear likely to be the first

applications that would be provided via a direct-to-subscriber system.

Table 2-15

Promising D-T-S Applications

Home Banking Services

Home Financial Services

Home Shopping Services

Another factor that will be key in the development of direct-to-

subscriber communications links will be the efforts of the consumer

electronics industry. The consumer electronics industry has enjoyed

tremendous growth in the past, and will most likely play a key role in the

development of the direct-to-subscriber terminals. Consumer expenditures in

home entertainment electronic equipment are expected to grow substantially in

the next decade, and thus represent an attractive area for the development of

new products, such as those required for access to a direct-to-subscriber

system.
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Thus, the market forecast will concentrate on the applications

thought to be most likely: banking, financial services, and home shopping/

retail, while also examining the trends and strategies of the consumer

electronics industry. If a direct-to-subscriber system using Ka-band satel-

lite technology is developed in the near term, it will most likely be an

outgrowth of these market segments.
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SECTION3
SYSTEMREQUIREMENTS

This section addresses some of the system aspects of the FSS
design. In particular, frequency stability, method of access, throughput/
delay, on-board processing, signal structure, and multiple beams will be
investigated here.

3.1 FREQUENCYUNCERTAINTY
3.1.1 Doppler Shift

One source of frequency uncertainty is generated by satellite
motion. The resulting Doppler shift in frequency can be estimated by v/l,
where v is the spacecraft velocity relative to the ground terminals and
equals 0.01 m at 30 GHz. me spacecraft velocity should be on the order of
several meters per second and should not exceed 10 m/s. The resulting maximum
Doppler shift is therefore 1000 Hz.

3.1.2 Frequency Stability
In order for low-cost acquisition and tracking circuitry to be used

in the ground terminals, the frequency must be known to a fair degree of
accuracy. The lower the terminal burst rate, the more accurate this knowledge
must be. Because of this relationship, the frequency stability requirement
will place a lower bound on the uplink burst rate in order to minimize the
terminal cost.

An accurate reference at 20 GHz is cost-prohibitive. A 10-3
accuracy (_10 MHz)currently sells for roughly $800, even in large quantities.
An ovenized or phase-locked version providing 10-6 accuracy would be consider-
ably more expensive. Since at least 10-6 accuracy is required (_30 kHz), some
other mechanismfor frequency stability is therefore required.

Including a pilot tone in the system architecture is one alterna-
tive to precise standards in each terminal. Someform of frequency locked
loop (FLL) or phase locked loop (PLL) would be used to track out most of the
frequency error of the local oscillator. A simple block diagram of the
receiver circuitry is shownin Figure 3-I.

The 20 GHzRF is bandpass filtered and downconverted to a high (say
200 MHz) IF by a harmonic mixer. A FLL would use a discriminator to locate
the pilot tone and a 10 GHz voltage-tuned, dielectric-stabilized oscillator
(DSO)to mix (its second harmonic) with the RF to produce the IF locked to the
pilot signal. This DSOwould require much less accuracy than the 10-6 LO
since the pilot tone discriminator could have a ±10 MHzsearch window. The

resulting 10 -3 accuracy requirement for the DSO would still be quite expensive

but the cost should fall in coming years as that technology matures. An

alternative to the voltage tuned DSO is the less expensive but less accurate

Gunn diode oscillator. Accurate oscillator technology for consumer Ka-band

applications would therefore be an area for future research.

The accuracy of the high IF generated by the FLL would be a

function of the quality of the discriminator. By itself, the discriminator

accuracy would still be on the order of several MHz. However, by locking the

discriminator to a 200 MHz source, accuracies of several kHz should be pos-

sible.
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Once an accurate IF is obtained through the FLL, a lower cost local

oscillator/synthesizer accurate to within tens of Hz or less could then be

used to tune to the desired channel. The stable source located in this

synthesizer could also be used as the reference for the FLL's discriminator.

_l_ne overall accuracy of this approach is determined by the accuracy

of pilot tone (Doppler error), the accuracy of the transponder frequency

source (translation error), the accuracy of the terminal transmit frequencies

which are obtained through the FLL, and the accuracy of the IF produced by the

FLL.

The Doppler error was found to be no more than 1000 Hz without a

pilot tone. With a pilot tone transmitted by or through the satellite, this

Doppler error should be reduced since all terminals will be locked to the

pilot with only the difference in aspect angle contributing to a residual

error. The CONUS covers an angle of roughly 8 ° from geostationary orbit, so

the resulting differential Doppler error is just 1000 Hz ° sin(8 °) or 140 Hz.

It is assumed that the frequency translation on the satellite will

be quite accurate since considerable funding can be allocated towards the

space segment. One hundred Hz accuracy is assumed.

The remaining frequency error is due to the FLL and the generation

of a transmit carrier based on the frequency locked to. A couple kHz of error

seems to be a reasonable goal although this may not be possible with low-cost

circuitry.

The sum of these error sources is on the order of 2 kHz although

this presumes some reduction in current costs. For the sake of this study, we

will assume frequency errors of 10-20 kHz. To limit this frequency uncertain-

ty to 10 percent (10%) of the transmit bandwidth (roughly the maximum uncer-

tainty desirable for a relatively low cost acquisition and tracking loop), the

uplink burst rate must be at least 200 kb/s. Since the data rates of the

potential applications are far lower than this (see Section 2), some form of

TDM burst format would be necessary.

3.2 MULTIPLE ACCESS

We have shown in the preceding section that moderate burst rates

are required for frequency stability reasons. Straiqht FDMA is therefore not

feasible since the application data rates are much less than this burst rate.

Pure TDMA is also impractical because the large number of network terminals

and low duty factor would lead to inefficient channel usage and long delays.

Also the strict timing requirements and high (multi-Mb/s) burst rates would

result in high terminal costs. Instead, a network of many, low volume users

such as this lends itself to either random access (RA), demand assignment

(DA), or spread spectrum multiple access (SSMA) schemes. These three

techniques will be examined in this subsection.

3.2.1 Random Access

Random access is probably the simplest access scheme available and

hence the least expensive to implement. However, due to the inherent delays

resulting from the inevitable packet collisions, RA is restricted to non real-

time communication. Pure ALOHA is the least complex form since it requires no
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timing information. For this reason, it is quite attractive for this FSS ap-

plication. The penalty one pays is the low maximum throughput of

I/2e (18.4%); the typical operating point is between 10 and 15 percent

throughput which reduces delay and maintains stability.

By adding timing information to each terminal, Slotted ALOHA can be

used which effectively doubles the channel throughput. The timing requirement

can be expensive to implement as guard times of <5% of the slot duration must

be enforced. For a 500 b packet and a 200 kb/s burst rate, the timing

uncertainty must be reduced to <125 _s. If shorter packets are envisioned,

than even more stringent timing must be maintained.

To achieve this accuracy, one of the two approaches described in

Subsection 3.1 can be taken: I) very stable local oscillators can be used so

that timing corrections are not necessary; or 2) a FLL can be used in each

terminal to track a pilot tone with time ticks transmitted by a network

reference [Emerson, 1985]. Option 1 is impractical since to achieve the

necessary timing stabilit x for even one hour would require a LO accuracy of

125 _s/3600 s = 3.5 x 10 -u, clearly too expensive given the current cost of

Ka-band oscillators. The second option has been shown to be advisable for

frequency accuracy considerations and could therefore be used to maintain

timing.

In either case, to use a slotted access scheme, relative timing

must be obtained at the time of net entry. This relative timing is needed to

account for the propagation delay to or from the satellite. (Round-trip

propagation delay is not important in this context since the ultimate network

timing originates at the satellite.) Part of the propagation delay uncertain-

ty is due to the terminal position uncertainty which can introduce up to 16 ms

of delay bias. The removal of this bias requires either a two-way communica-

tion with the network reference or the broadcast of the satellite range by the

reference and the entry of the terminal's location by the user into the

terminal's data base. For consumer products, it is usually advisable to make

operation as simple as possible so the two-way communication is the preferred

approach.

This two-way communication for a terminal to achieve network

synchronication can be done automatically when the terminal is turned on. The

requesting terminal would include its own time of transmission in the log-on

message and the network controller would respond with its time of arrival (of

the request) and time of transmission (of the response). The originating

terminal would measure the time of arrival of the assignment and, with the

other parameters known, would be able to accurately measure the round-trip

delay through the satellite. The timing uncertainty at the start of the

message transmission should then be quite small. [Emerson, 1985] has shown

that accuracies to a fraction of a millisecond can be obtained using a

standard I MHz clock. If done in software, the marginal cost of this

capability should be minimal. Maintaining slot timing may be a good improve-

ment to the low throughput of Pure ALOHA. However, if bandwidth is of less

concern than terminal cost, then obtaining slot timing is not cost-effective.

Both Pure and Slotted ALOHA are inherently unstable since each

collision generates more traffic. For this reason, random access networks

typically operate well under their maximum throughput. These ALOHA schemes
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can, however, be made more stable through a modification to the baseline
access algorithm which increases the randomization interval following each
successive collision. By doubling this interval after each collision,
throughputs close to the theoretical maximumcan be achieved. %_nedrawback is
that average delay increases exponentially as one nears the maximumthroughput
point.

3.2.2 DemandAssignment
The main alternative to RAis DA channel capacity. Here a central

controller would be responsible for assigning all channel traffic. Requests
for channel capacity are madeover commonreservation channels using either RA
or TDMA. With a large number of users, RA on the reservation channels is
preferable. DA makes good sense when long or real-time connections are
needed. Throughputs muchgreater than possible with RAcan be achieved.

No timing requirement needbe associated with a DAalgorithm. Pure
ALOHAcan be used for the requests, and channels can be assigned asynchronous-
ly on a first-come/first-serve basis. The assigned channel would be
relinquished by the terminal on the reservation channel at the completion of
the message. However, with overhead including requests, assignments,
relinquishments, and acknowledgments, and with round-trip propagation delays
of I/4 s, the messagelength should be longer than several seconds in order to
achieve good throughput. At 200 kb/s, this would require messagesat least
500 kb in length, longer than most applications. We can conclude, then, that
DA without such timing is not a practical alternative for the 30/20 GHzFSS.

Timing for DA must be synchronized only for the duration of the
message, since RA could be used for the request and the relinquishment. For
example, with an application data rate of 16 kb/s, 12 users could be time
multiplexed on one 200 kb/s uplink channel. The network controller would
assign the beginning slot time and the slot interval, and the terminal would
transmit in those assigned slots until finished. In the Subsection 3.2.1
description of Slotted ALOHA,we showedthat a timing accuracy of 125 _s would

be required to achieve 5% guard times for 500 b packets. The same two-way

communication could be used to provide this timing accuracy. If a FLL is used

to track a pilot channel, then this timing acquisition need be performed only

once, at terminal log-on. With a 10 -6 LO instead of a FLL, the acquisition

procedure must be repeated for each request (demand) as slot timing to within

the necessary guard time could be maintained for only 2 min. This should be

long enough for many applications, however. If longer packet lengths could be

used (several thousand bits), then less stringent timing would be required.

It is therefore possible to provide DA channel slot time to those

applications which require either real-time service (voice), or very long

messages for which pure RA would be inefficient. The added terminal

complexity to provide this service is not significant, requiring a software

routine to calculate the round-trip propagation delay and more sophisticated

timing control to stay within the TDM slots.
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3.2.3 Spread Spectrum Multiple Access

Much has been made of SSMA in recent years, both for military and

commercial applications. Equatorial Communications Co. has a system of C and

Ku-Band satellite terminals which employ this method of access; many thousand

terminals have been sold and networks of over one thousand terminals now

operate successfully [Katsaros, 1986]. Although SSMA can refer to either

direct sequence (DS) or frequency hopping (FH) methods of spectrum spreading,

we will confine ourselves to DS approaches because of the prohibitive cost of

frequency hopping synthesizers.

There are a number of advantages to such an access scheme. A

principal advantage is that, like Pure ALOHA, terminals may transit at any

time without need for accurate knowledge of system time. Second, the transmit

power required for SSMA is far less than for a burst communications system

using TDM. The power required is simply a function of the data rate and not

the burst rate. For 9600 b/s applications, this results in a 13 dB advantage

over the TDM architectures discussed previously which burst at 200 kb/s.

Other advantages of SSMA are I) no collisions and hence no need for message

acknowledgments, and 2) less required central control than either RA or DA.

[Viterbi, 1985], and [Weber et al., 1981] have evaluated SSMA

systems to determine their performance. The results of these analyses are:

I) SSMA is always power limited and never bandwidth

limited.

2) There is a threshold in the number of users of a SSMA

system beyond which performance degrades quite rapidly.

3) Use of coding is especially beneficial in SSMA since the

system is already spread, although little performance

improvement is obtained for a code rate r < I/3.

4) Unless spectrum efficiency is of little concern, then

TDMA and FDMA systems outperform SSMA in terms of

required carrier-to-noise power ratio (CNR).

5) For small terminal commercial systems, link margins are

already limited without introducing the self-

interference associated with SSMA.

6) For unequal signal powers, a signal e times stronger

than a weak (attenuated) signal acts like s other equal

power signals to the weaker user.

Several figures illustrate these conclusions. First Figure 3-2

[Weber et al., 1981] shows the degradation factor (DF) versus total number of

users for a coded system with spreading factors, i.e., ratio of chip rate to

bit rate (Rc/Rb), of 200 and 2000. (DF factor is the amount of excess signal

required to maintain a given error rate as compared to 'a single user case.)

Note that beyond some point, no amount of extra power will enable more users

to successfully communicate as the system becomes interference limited, not
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noise limited. Also, Figure 3-3 [Viterbi, 1985] illustrates the efficiency of

SSMA versus FDMA/TDMA for various code rates. It shows that SSMA efficiency

(using BPSK) never exceeds 0.4 b/s/Hz and then only at high values of CNR

(throughput taking coding into account).

These two figures were used to compute channel efficiency as a

function of the DF. _nis is provided in Table 3-I below at a 10 -5 bit e_ror

rate and two coding rates. Again BPSK is assumed.

This table provides good insight into the penalty one pays for

using SSMA instead of conventional FDMA or TDMA systems. For example, if one

could obtain 0.25 channel efficiency using demand assigned TDMA or FDMA and

rate I/2 coding (quite attainable), then it would take a little more than an

additional 5 dB in the system design, either in lar_er antennas, more power,

lower noise amplifiers, etc., to obtain the same I0 -J BER and 0.25 efficiency

using SSMA. Conversely, if one were willing to give up only I dB in system

design, then efficiencies of less than 0.09 b/s/Hz would result using SSMA.

Slotted ALOHA with r = I/2 would provide much better efficiency

(0.12 - 0.15 b/s/Hz) and even Pure ALOHA could provide comparable

efficiency. In clear conditions when no rain compensation (coding) is

required, then both Pure and Slotted ALOHA are more efficient then SSMA and

require less carrier power, per bit transmitted.

Table 3-I

Degradation Factor of SSMA

for Given Channel Efficiency

(BER = 10 -5)

DF (dB) Efficiency (b/s/Hz)

r=I/2 r=I/3

0.07 0.085

0.125 0.15

0.17 0.20

0.21 0.24

0.24 0.275
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These efficiencies have assumed equal power users of the spread

spectrum system. At Ka-band, rain will cause up to 19 dB of signal attenua-

tion and unless some form of power control is used, the signal powers could

vary considerably (see Section 3.5.1.3). In order to allow 10 dB differences

between signal powers in the link budgets, the spreading factor must be

increased 10 dB to compensate for the many stronger (unattenuated) signals.

For example, if 10 out of 100 users are attenuated 10 dB because of heavy

rain, then to these weak users, the system interference is equivalent to 909

(90 x 10 strong signals + 9 weak) competing equal power users. The achievable

efficiencies must therefore be reduced by the maximum expected ratio of user

powers. In this case, the efficiencies would be between 0.01 and 0.04 b/s/Hz.

In addition to these performance issues, synchronization of the

receiver constitutes a major design problem of SS communication systems. For

the low-duty factor applications considered, signal acquisition will be neces-

sary for each message sent. Numerous acquisition circuits have been proposed

and demonstrated, but one popular method is the use of a sliding correlator.

The incoming signal is correlated with the local PN sequence at each chip

interval (or fraction of a chip) until the correlator output exceeds a given

threshold. At that point, acquisition is completed and signal tracking com-

mences. Additional circuitry such as a PLL or T-dither loop is necessary to

perform this tracking.

Once the signal is despread, the demodulator can detect the data.

Unfortunate!y_ any frequency error _ue to LO instability or Doppler offset

will be significant given the relatively low data rate. For example, a 20 kHz

frequency uncertainty provided by 10 -6 LO is far too large to properly demodu-

late a 9600 b/s signal. Even the I kHz Doppler induced by satellite motion

produces a substantial frequency uncertainty at the given application data

rates. A pilot tone to provide a frequency standard to all users therefore

will be more necessary for SSMA than for burst type TDM access schemes.

3.2.4 Access Recommendations

We have shown in this section that both RA and DA are viable access

methods and have a place for certain applications. We have also seen that

SSMA has several significant advantages and disadvantages with respect to RA

and DA. However, it is felt that since bandwidth is of secondary importance

to system cost, then SSMA and Pure ALOHA are the two most promising methods of

access for short, interactive applications. DA still may be the preferred ap-

proach for long data transfers. The remainder of this study will focus on

SSMA and Modified Pure ALOHA since, as concluded in Section 2, interactive

applications hold more promise than data transfer.

3.3 THROUGHPUT AND DELAY

In the preceding subsection, the throughput of both Pure ALOHA,

Slotted ALOHA, and DA access techniques were addressed. In this subsection,

the capacity of a direct to subscriber system using these access schemes is

estimated. In addition, the delay performance of RA is calculated.
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3.3.1 System Capacity

To make an estimate of the capacity of an RA FSS system in terms of

the number of users it can support, several assumptions must be made. _hese

are:

Average data rate (R)

Available bandwidth (W)

User duty factor (_)

Channel efficiency (S)

Pure ALOHA

Number of beams (M)

Number of frequency subbands

or designs (N)

(for frequency reuse)

Single-user time-bandwidth

product (TB)

9600 b/s (see Figure 2-2)

I 00 MHz

10% (see Table 2-13, Point

of Sale)

0.1 25

32

4

0.75 Hz/b/s (for quadrature

modulation)

The user therefore transmits at an average rate of

R • _ = 960 b/s,

and the data capacity of the spectrum (per 100 MHz) can be calculated as:

W • M 100 MHz • 32
= = 1.07 Gb/s . (3.1)

(TB) • N 0.75 Hz/b/s • 4

With a 12.5% channel throughput, Pure ALOHA therefore has a capacity of

133 Mb/s. The number of RA users that can be supported is therefore

133 Mb/s / 960 b/s = 139 thousand. Again it should be noted that this is for

each 100 MHz of bandwidth.

This assumption of 10 percent duty factor was based on a point-of-

sale business application. The consumer user would have a duty factor several

order of magnitude lower so the 139,000 users can be thought of as a lower

bound. Millions of consumer users could easily be served.

3-11



3.3.2 Delay

Delay is only meaningful for RA since DA provides real-time com-

munication. For ALOHA, the probability of successful transmission is S/G,

where S is the normalized input traffic and G is the normalized channel traf-

fic. Each unsuccessful transmission incurs a delay of t o + kT/2R seconds

where t O is the timeout period, k is the retransmission interval in packet
lengths, and T is the packet length in bits. The timeout period must be

greater than twice the round-trip propagation delay (dp) plus the message and

acknowledgment lengths. For a 200 b acknowledgment, this corresponds to a t O

of 0.5 s + (T + 200)/R. A successful transmission takes dp + T/R. The

average transmission delay is therefore:

D = (t o + kT/2R)(G/S - I) + dp + T/R • (3.2)

For Pure ALOHA the G/S term can be approximated as e 2G for a large number of

users as long as k is large. In practice, k • 15 provides good randomization

of the collisions. Figure 3-4 plots the delay as a function of S for several

values of T. A 9600 b/s data rate is assumed. For a 600 b message, through-

put is limited to 0.15 to keep the average delay to under 0.7 s. This is also

a practical limitation on throughput necessary to maintain stability. If

longer delays are acceptable, Modified Pure ALOHA (MPA) could be used to

realize throughputs above 0.15. Nearly identical delay performance is

obtained with Slotted ALOHA with the difference being that nearly twice the

throughput can be achieved for the same average delay.

3.4 ON-BOARD PROCESSING

3.4.1 Features of On-Board Processing

The type of advanced domestic satellite envisioned for lower data

rate communications applications may include a regenerating repeater. This

portion of the satellite demodulates uplink signals to baseband; processes the

data bits by performing error control, baseband switching, and reformatting;

and remodulates the data for the downlink.

3.4.1.1 Signal Regeneration

The regeneration of data by the baseband processor has the

advantages of either improving performance or permitting smaller terminals and

a lighter satellite to maintain a given margin. These reductions are due to

lower power and smaller antennas and result in lower cost. Conventional

transponder satellites simply hard-limit, frequency translate, and amplify the

incoming signals. This repeats uplink noise and introduces on-board intermod-

ulation products due to satellite nonlinearities. These degradations imply

the need for higher power, larger antennas, and lower-noise receivers to

ferret out the useful signals.

On the uplink, the terminals can burst at much lower rates with

FDMA then with TDMA. This difference can be significant in reducing terminal

cost since it implies less effective isotropic radiated power (EIRP) for the

same energy per bit and a more relaxed timing requirement.
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Another issue is the degree to which terminals must be coordinated
as membersof a network with respect to transmission timing, frequency, and
power. Many existing bandwidth-efficient modulation schemes do not require
stringent network coordination (see Subsection 3.5). In this case, the burden
of demodulating simultaneous signals from independent terminals is placed on
the satellite. Although this increases satellite complexity, it can simplify
the terminals, and this philosophy maybe economically attractive in a system
of manymore terminals than satellites.

Since signals are regenerated by demodulation and remodulation on-
board the satellite, there is the opportunity for choosing a different down-
link signal format than used on the uplink. In particular, TDMdownlinks
which mayoperate at manytimes the uplink burst rates, are possible. In the
FDMAmode of operation, several signals coming from separate earth terminals
are simultaneously demodulated by the satellite. These data are switched,
reformatted, and combined with data from other uplink beamsinto a set of TDM
downlinks, one for each downlink beam. Each TDMdownlink data stream is
broadcast from the commonsatellite platform and received by all active
terminals in the coverage region of that downlink beam. Destination terminals
select portions of this TDMtraffic addressed to them. This FDMA/TDMmultiple
access/multiplexinq schemeleads to lower cost terminals and minimizes inter-
modulation problems of the satellite.

The fundamental reason for a TDMrather than an FDMdownlink is the
desire to avoid unnecessary intermodulation interference arising from
generating too manydownlink signals at distinct carrier frequencies with the
simultaneous operation of nonlinear power amplifiers on-board the satellite.
The higher downlink burst rate implied is more manageablein this case because
all downlink signals emanatefrom the sameplatform, which mayemploy a common
master timing reference. This makes the task of acquiring, tracking, and
demodulating downlink bursts in the terminal mucheasier, compared to a situa-
tion where bursts from different terminals are generated from separate clocks
(as on the uplink).

3.4.1.2 Baseband Switchin 9

A much more important advantage of on-board processing in the form

of satellite regenerative of the signal may be the great increase in flexibil-

ity for switching and interconnecting users on a bit or packet level basis.

With the regenerative repeater, one is no longer restricted to a point-to-

point network structure. One-to-many and many-to-one applications can be

envisioned as well. By demodulating the lower rate data, opportunities for

on-board storage with buffers or bulk memory are introduced. This can be

advantageous for collecting data to a destination not yet in a scanning beam

coverage area, for example. It can also be useful for error control, link

protocols, and reformatting data for the downlink, as noted.

3.4.2 Demodulation/Remodulation

Major contributions to spacecraft weight and power, resulting from

the baseband processor and its communications related interfaces, are implied

by on-board demodulation, especially if an all-digital implementation is

selected for the demodulators. Several alternatives for accomplishing the

demodulation of uplinks, all-digital, hybrid analog/digital, and all-analog,
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are indicated in the general block diagram of Figure 3-5. Each of these

alternatives is discussed in some detail in an attempt to ascertain the most

suitable approach.

3.4.2.1 All-Digital Implementations

The all-digital approach necessarily involves an RF mixing of the

incoming signals to an IF bandwidth, followed by an analog-to-digital (A/D)

conversion process with some level of input amplitude scaling and quantiza-

tion, and subsequent purely digital arithmetic and accumulation operations

assuming a strategy of rounding or truncation. The required high speed multi-

plications can be either performed with b-bit read-only memories (ROMs), b-bit

high speed multiplier logic elements (b ( 5, typically), or with CORDIC

rotators [Haviland, Tuszynski, 1980]. High power consumption of the digital

circuitry required to perform demodulation of multiple signals in a single

relatively wide IF bandwidth may suggest that each signal be converted

separately to its own IF bandwidth by an individual RF mixer.

The preferred alternative is the group demodulation of several

signals within a subband after they pass through a single IF mixer and A/D

converter. The state-of-the-art of A/D converters and power consumption

calculations may suggest that this group demodulation approach is not feasible

for too wide a bandwidth. If it is feasible with respect to A/D conversion,

there should be some advantages, including lower weight and power, to group

demodulation as a compromise between simultaneous demodulation of completely

synchronized signals using an (FFT) algorithm and separate demodulation of

individual signals.

Signals with the same relative received power level could be al-

located to the same subband according to either on-board processing or ground

control protocols. This would result in either low crosstalk, or permit the

closer packing of the FDMA signals in the subband for a given crosstalk level.

A closer packing of carriers would imply a narrower subband and the possibil-

ity of a lower A/D conversion sampling rate and less power consumption.

3.4°2.2 Hybrid Realizations

The hybrid method of demodulation may involve an analog/ digital

demodulation technique utilizing surface acoustic wave devices (SAWDs) and/or

charged coupled devices (CCDs). With either family of devices, the basic

signal processing and output detection involves analog quantities. _ne rela-

tive avantages and disadvantages of SAWDs and CCDs are listed in Table 3-2.

This qualitative characterization should not be taken too literally because

there is a large region of overlap in the bandwidth/time-delay space where

either SAWDs or CCDs can be applied. (See Figure 3-6.) Also, not all of the

devices in either family possess every property shown in the table.

It is recommended that SAWDs and CCDs be examined as serious

candidates for implementing spacecraft demodulators. Their main advantage is

in the potential for low volume and power consumption. Although much has

already been done in attempting to apply these analog devices to digital

demodulaton, additional development is both warranted and on-going. SAWDs and

CCDs may represent a higher risk for spacecraft implementation than the all-

digital aproach for lower rate signals. However, higher data rates may make
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Table 3-2

Qualitative Comparison of SAWDs and CCDs

Surface Acoustic Wave Devices Charged Coupled Devices

Wideband (good for spread

spectrum and combatting

multiple access interference)

Narrowband (can handle

low data rates easily)

Operate at IF or RF (mixers

not required at VHF/UHF)

Operate at baseband (mixers

usually required)

Passive by high insertion 10ss

(non-volatile but amplifiers

required)

Active but no insertion _^-"

(volatile and power required)

Radiation insensitive (good

for operation in near-earth

space)

Vulnerable to radiation

(requires shielding in space)

May be temperature unstable

(oven may be required)

Temperature stable (good for

space operation)

Frequency may be imprecise

(tuning may be required) operation)

Power, size, cost can be comparable

CCDs may have longer Mean Time Between Failure (MTBF)
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SAWDs and CCDs quite attractive for spacecraft implementation. In this case

the space qualification of these signal processing devices should have high

priority.

3.4.2.3 Microwave Demodulation

The final alternative is a purely analog demodulation utilizing

standard microwave circuitry [Amadesi, et al., 1978]. This approach has the

outstanding advantage of being very low power. For standard digital

modulation schemes like quadriphase shift keying (QPSK) and offset or

staggered QPSK (SQPSK), these devices are conceptually very simple and

presumably can be packaged into small volumes. On the other hand, this

microwave approach may not lead to the same high density level of VLSI

circuitry achievable with the all-digital approach or with SAWDs and CCDs.

More importantly, the microwave circuits cannot be used with more advanced

bandwidth efficient modulation schemes where the baseband modulation shape is

not rectangular, as it is with QPSK. If there is a way of demodulating more

sophisticated waveforms in a completely passive and analog fashion using

microwave circuits, there does not seem to be any available literature on such

techniques.

3.4.3 Baseband Processor Example

In a narrow sense, a baseband processor is the subsystem of the

satellite communication payload that manipulates bits (b) or sequences of bits

(packets) of information gleaned from the digital signals received on the

uplinks. The inputs and outputs of this subsystem are binary data only. _he

input bits are derived from incoming intermediate frequency (IF) bandwidth

signals by the process of demodulation which converts individual signals to

their relatively smaller information bandwidths (basebands) through detecting

the bits of data imparted to the transmitted signals. The output bits are the

basis for the remodulation process whereby uplink signals are regenerated for

the satellite downlinks.

In a wider sense, the baseband processor includes the demodulators

and remodulators, because they constitute the interfaces through which the on-

board digital processor communicates with the outside would. The uplink

interface is emphasized in this subsection since the demodulators potentially

have the greatest impact on communications payload weight and power.

3.4.3.1 System Assumptions

The essential ingredients of an advanced domestic satellite com-

munication system are multiple beam antennas for frequency reuse, bandwidth

efficient modulation and coding for spectral and power conservation, and on-

board processing and switching for servicing many different traffic and user

requirements.

Satellite weight and power constraints which might be associated

with baseband processing are expected to be in the order of 400 kg and 2 kW.

This would include the functions of uplink demodulation, baseband processing

of data packets, remodulation, and downlink transmission power; antenna weight

is not included. With this weight and power budget, one can expect to support

as much as 100 MHz of spectral bandwidth devoted to signals to be processed at

baseband [White, et al., 1980].
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3.4.3.1.1 Uplink and Downlink System Interfaces

In the example design, it is assumed that there are 16 independent

uplink beams and 16 independent aownlink beams associated with the baseband

processor. Each uplink beam uses the same 100 MHz bandwidth in the uplink

frequency allocation, and similarly on the downlink. Assuming a spectrally

efficient modulation scheme which yields one b/s per Hz, the baseband through-

put of the satellite will be approximately 1.6 Gb/s.

For the sake of illustration, the 16 uplink or downlink beams are

arbitrarily divided into 8 fixed beams and 8 scanning beams. A common I ms

frame interval_ subdivided into eight 125 _s slots, is assumed. The beam and

slot organizations permit a combination of FDMA and TDMA operation on the up-

links. In a fixed beam, a number of FDMA carriers, each employing TDMA within

a frame may be used. In a scanning beam, a number of FDMA signals operating

in a single channel per carrier (SCPC) mode are present in the beam during a

given dwell interval. In this case, each carrier is associated with a dif-

ferent terminal user. At the end of each 125 _s slot, a scanning beam is free

to move to another coverage area. The period of every scanning beam is one

frame or 8 slots. Thus, nominally, a scanning beam would return to the same

coverage area every 8 slots, although the 8 specific coverage areas visited

could be reprogrammed from epoch to epoch. A fixed beam can be viewed as a

special case of the scanning beam where the coverage area does not change.

In order to maintain a given data rate R, a terminal located in a

scanning beam coverage area must burst its data at a channel rate of 8R.

Similarly, in a fixed beam with a carrier utilizing TDMA, a given terminal

must burst at 8R. Consequently, if TDMA is not used on a fixed beam carrier,

the burst rate is equal to R.

The nominal user data rate in this example is 1.544 Mb/s. This is

equivalent in data rate but not necessarily in signal structure to a TI

carrier. The example design could also incorporate lower rate users typically

in the order of 64 kb/s.

A TI rate user in a scanning beam must burst at aproximately

12.4 Mb/s channel data rate during a scanning beam dwell. This, along with

the one bit per cycle assumption implies that eight FDMA carriers at the burst

rate may be accommodated in the 100 MHz bandwidth of the scanning beam. Note

that in this sense, the I b/s per Hz assumption (which is optimistic; see

This implies that 64 TI class users may be serviced concurrently within a

scanning beam. With 8 scanning beams and 8 fixed beams, each interpreted as a

special case of the scanning beam, a total capacity equivalent to 1,024 TI

users is implied.

On the downlinks each beam contains only one TDM carrier. Each

125 _s slot of the I ms frame contains eight subslots each of 15.625 _s

duration to accommodate the 8 FDMA uplinks. The downlink burst rate is there-

fore 64R = 98.8 Mb/s, nominally.

3-20



3.4.3.1.2 Rationale for System Parameter Selection

It is important to understand the fundamental reasons for a given

frame period and for the need for scanning beams. Although the particular

values selected for the frame duration and the number of slots per frame are

only nominal; some explanation of how they were selected follows.

It is assumed that the satellite is in either a geostationary or a

near-geostationary orbit. This implies a round trip propagation delay of

approximately a quarter of a second. For real-time traffic, it is desirable

that any satellite processing delay not contribute significantly to the over-

all delay.

One potential source of processing delay on-board the satellite

derives from the possible accumulations of several bursts of uplink data from

one source terminal in an FDMA mode to produce a single, higher rate burst of

data to a single destination terminal in a TDM downlink mode. Assuming that

each uplink burst is received in the same slot of the periodic satellite

frame, and that the downlink burst will occupy the same slot duration, the key

parameters are the frame duration and the number of frames required to accumu-

late the downlink burst data. In the most straightforward realization of the

present approach, the ratio of the downlink burst rate to the uplink burst

rate is equal to the number of slots in a frame. Thus, if an uplink user has

access to only one slot per frame and the satellite is accumulating data from

that user for one particular downlink user, it takes a number of frames equal

to the number of slots per frame to accumulate the entire downlink burst data.

The parameters of I ms per frame and eight slots per frame imply a typical

processing delay of 8 ms. Since this is much less than a one-way propagation

delay, the integrity of real-time data will be preserved even though such on-

board processing is performed.

Another form of on-board processing delay is that incurred by

waiting for an appropriate downlink slot and/or beam for the destination of

accumulated uplink data. This type of delay is typically upper bounded by the

frame duration rather than some multiple of the frame period. Accordingly,

this constraint is less stringent than the one implied by the FDMA/TDM

conversion technique discussed above. For real-time data, the frame could be

in the order of 10 ms long if it were determined just by the tolerable waiting

time for downlink slots or beams. Tnis would be possible if every packet

_eceived _....JuuL_,,_ _A uplink o_-I^_ a1_._y_ ,_=a._..............._n_mi f_ in a downlink subslot

of one-eighth a slot duration within the next frame.

For non-real time data, much longer frames could be utilized. This

could be advantageous for smaller, less expensive, low duty factor terminals

which might employ ground-packet-radio type protocols with high channel effi-

ciency.

The number of slots in a frame was selected to be a power of two

for convenience of binary representation in the baseband processor and in the

order of ten to construct an illustrative system without too large a burst

rate disparity between the uplinks and downlinks. The I ms frame is of the

right order of magnitude to avoid excessive processing delay, and when sub-

divided into 8 slots, a standard 125 _s slot duration compatible with TI

signal structures results. Uniform slot durations have been assumed in the

example design for simplicity and to provide a convenient means of determining
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determining and controlling required burst rates and scanning beam dwell

distributions. Although the resulting design would probably be more complex,

it is certainly possible to envision non-uniform slot durations in conjunction

with variable and programmable frame partitions.

The rationale for scanning beams follows from the basic system

design objective of complete coverage of the continental United States (CONUS)

and the highly non-uniform population density in this country. A reasonable

engineering judgment for the baseline design is that a collection of fixed

beams only would be an inefficient realization of spacecraft hardware and

platform space. An alternative recommendation is a combination of fixed beams

and scanning beams, where the scanning beams would be time-shared to cover the

less densely populated and more remote reqions of the country. Tne fixed

beams would be designed for the metropolitan area surrounding the major

cities. (Unfortunately, the scanning beams would necessitate more complexity

in the ground terminals to maintain strict network timing. More on this

subject is contained in Section 6.)

Each scanning beam would be preprogrammed to visit a given coverage

area with a cumulative dwell time that is proportional to the population of

that area. This schedule would normally be followed automatically on-board

the spacecraft without any ground control. Perturbations from the average

scanning beam dwell distribution would be specified by central ground command

on a relatively infrequent basis to reflect gradual shifts in traffic demand.

3.4.3.2 Sizing the Baseband Processor

The example baseband processor services 16 uplink and 16 downlink

beams. There are 8 fixed beams and 8 scanning beams for both the uplink and

the downlink. The fixed beams can be implemented by using scanning beams that

are programmed to scan the same coverage area continuously. All transmissions

over the satellite links are synchronized within 1 ms frames. Each frame

consists of 8 scanning beam dwell intervals (slots). Every slot is 125 _s in

length. Ten microseconds of each slot is reserved as an interblock gap (mes-

sage guard band) while the remaining 115 _s are used for the actual transmis-

sion. (This increases the required terminal burst rates by a factor of

125/115 = 1.09.)

The satellite links are organized so that each uplink beam contains

eight FDMA channels per slot. F_ch downlink beam contains 8 TDM channels per

slot. A channel is defined as a instantaneous signal from or to a distinct

user or terminal, from the satellite's point-of-view. Once assigned to a

pacticular slot, a channel must share its slot with seven other channels.

On board the satellite, there is one demodulator for each uplink

channel. The downlinks have I TDM modulator per beam. Since there are 16

uplink and 16 downlink beams that each support 8 channels/slot, signals on 128

unique channels will be arriving at the satellite simultaneously while 128

downlink channels are also active during each slot. Therefore the baseband

processor must contain 128 demodulators and 16 modulators.

By using baseline assumptions concerning the beams, the throughput

and switching requirements of the processor can be determined. The following

assumptions are made concerning the satellite beams:
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I. 16 uplink and 16 downlink beams to be serviced by the

baseband processor;

2. Frame period = I ms;

3. 8 slots per frame implies I slot = 125 _s;

4. 8 channels per slot; and

5. Channel capacity = I packet per frame.

The uplink throughput of the baseband processor is:

Total number of packets per frame =

# of channels # of slots (3.3)
# of beams x x

slot frame

I packet per beam
x channel

= (16) x (8) x (8) x (1) packets/frame

= 1024 packets/frame.

If we allocate one packet per user per frame, 1024 users can be serviced by

the baseband processor:

Total number of users serviced =

1 # of packets 1

# of packets x frame = T " 1024 users

user • frame

(3.4)

An additional baseline assumption is that users are to transmit at

an average TI rate of 1.544 Mb/s. Using this value, the requirements of the

satellite links and the hR_eband processor can now be specified in more

detail. Since a user's data is collected over a I ms frame interval, the

packet size for the T1 data rate is 1544 bits. This packet is sent over the

satellite link within one slot. Since the uplink slots provide the networks

with a 115 _s transmission period, a user's channel must be capable of an

uplink burst rate of I 3.4 Mb/s. Each uplink beam supports 8 channels. There-

fore, the total uplink bandwidth per beam is 107.4 MHz if a I b/s/Hz modula-

tion is employed. Since each downlink beam supports 8 TDM channels at 8 times

the uplink burst rate, the downlink bandwidth per beam is also 107.4 MHz,

again assuming a I b/Hz modulation. Since the processor services 1024 TI

users, the satellite throughput is 1024 x 1.544 Mb/s = 1.6 Gb/s.
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3.5 SIGNALSTRUCTURES

Bandwidth-efficient but particularly power-efficient modulation and

coding schemes are of interest. Tnere should be ample bandwidth available for

these applications but it should certainly not be squandered just to accom-

modate low cost terminals. The conservation of uplink bandwidth is

particularly important for FDMA architectures because of potential crosstalk

(interchannel interference) problems with many unsynchronized uplink transmis-

sions at different power levels.

With a baseband processing satellite which separates the uplinks

from the downlinks, different modulation and coding schemes could be employed

on the downlinks. In an FDMA/TDM architecture, for example, a less bandwidth-

efficient but more power-efficient modulation such as multiple frequency shift

keying (MFSK) might be employed if it simplifies the terminal receiver. If

coding is used on the downlink to mitigate rain attenuation, a simpler

decoding procedure, e.g., using hard decisions rather than soft decisions,

might also be recommended for less complexity at the terminal.

3.5.1 Modulation and Coding

The required uplink carrier frequency spacing depends on the bit

error rate (BER) requirement, type of modulation and coding employed, any

transmitter filtering at the terminals or receiver filtering at the satellite,

and propagation attenuation of signals in adjacent frequency channels, due to

.... , etc., relative to that of the signal being demodulated at the satellite.

For the purposes of this small study, and for reasons to be given

shortly, admissible uplink waveforms will be limited to constant-envelope,

continuous-phase, offset-quadrature minimum shift keying (MSK)-type modula-

tions, with convolutional encoding and Viterbi decoding.

Constant-envelope modulation is attractive for high efficiency

operation of nonlinear power amplifiers, not only in the satellite (for

downlink(s)), but especially on the uplinks for lower cost terminals. MSK-

type modulations are very power and bandwidth efficient, having the same

performance as binary phase shift keying (BPSK) or quadriphase shift keying

(QPSK) in additive white Gaussian noise (AWGN) and much lower crosstalk than

QPSK on the FDMA uplinks. MSK-type modulations are quite reasonable to

implement, although they are not as simple as BPSK or QPSK.

The performance of neariy-constant-envelop_, MSK-t_pe modulations

have been studied extensively through analysis and computer simulation for use

in non-linear non-regenerative satellite channels subject to bandwidth limita-

tions, interchannel interference, rain attenuation, etc., [Fang, 1981]. These

results showed that this family of offset-quadrature modulation with some

baseband pulse shaping consistently outperforms conventional QPSK with

filtering. This lends further evidence supporting the selection of MSK-type

modulation as a robust class of waveforms for this present application.

Other non-constant-envelope modulations such as quadrature over-

lapped raised-cosine modulation [Austin, Chang, 1981], filtered PSK [Prabhu,

1977], or filtered MSK [Amoroso, 1979] can be more bandwidth efficient but are

usually less power efficient, introduce intersymbol interference, and/or

require additional filtering or automatic gain control (AGC) (implying addi-
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tional insertion losses, complexity, etc.). More general continuous-phase

modulations [Anderson, et al., 1981] can also be more bandwidth and power ef-

ficient, but they are more complex to implement and more difficult to

synchronize. Furthermore, the crosstalk performance of most non-MSK-type

modulations is still unknown.

In contrast to most other approaches to bandwidth-efficient modula-

tion, we handle crosstalk not in terms of the power spectrum of a modulation

(mainlobe width, sidelobe level, fraction of out-of-band power, etc.) but in

terms of the effect of the interfering signal on the predecision output of the

receiver. This leads to a more direct way of measuring crosstalk and its

potential impact on BER.

Convolutional codes are relatively simple to implement, especially

at the transmitting terminals. The Viterbi decoding procedure, which should

now be feasible in a processing satellite, is a powerful way of combating up-

link rain attenuation on 30 GHz (and above) uplinks. It might be feasible to

use coding only when necessary, as long as this does not unduly increase

terminal complexity.

Viterbi procedures lend themselves more easily to soft-decision

decoding for better performance (more coding gain) than block codes. As more

is learned about integrated, continuous-phase modulation/coding schemes,

Viterbi decoding techniques can be applied naturally because of structural

similarities [Mazur, Taylor, 1981].

In this section a signal-to-noise ratio (SNR) model for handling

crosstalk and interbeam interference is developed. The relative amplitude of

interfering carriers in adjacent channels due to differences in rain attenua-

tion is treated. An optimum way of specifying uplink margins as a function of

typical rain region fades is derived. A discussion of block versus convolu-

tional coding is presented.

3.5.2 Effective Signal-To-Noise Ratio

An effective SNR including the effects of interchannel interference

(crosstalk), co-channel interference and channel (receiver) noise is derived

in this section [MITRE, 1981]. This is useful for estimating the interchannel

spacings and interbeam isolations required for FDMA waveforms. The results

obtained hold for any modulation in a large class of constant-envelope, off-

set-quadrature, MSK-type modulations having the same BER performance as BPSK

or QPSK in AWGN. Complex variable notation is employed for ease in deriva-

tion.

Consider a desired signal at a carrier frequency _(rad/s) of the

form s(t) exp(j_t) where the baseband signal

s(t) = [ b v(t-nT) + j _ b v(t-nT) (3.5)
n n

n n

even odd

is composed of data symbols b n = _ _ (E b is the energy per data bit and the

elementary signals are antipodal) and a baseband window defined as
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v(t) _ 0, Itl > T (finite support) (3.6a)

T

f v2(t) dt = I

-T

(unit energy) (3.6b)

2 v 2 I
v (t) + (t-T) = _, t c (0,T) (constant envelope)

(3.6c)

(R = 1/T (b/s) is the data rate).

The window v(t) is rectangular for offset or staggered QPSK (SQPSK)

and a half sinusoid for MSK. Many other windows are also possible. More

specifically

s0PsK: v(t) = I , Itl < T (3.va)

MSK: v(t) I _t I I (3.7b)=--_cos t < T

/T

__ 1 2w t_
SFSK: v(t) = I cos [_Tt 4 sin --_-), ltl < T (3.7c)

"Optimum" : v(t) --I cos _t 2wt_ I I
= ._-_- + a sin -_--], ,t, < T (3.7d)

("a" is a parameter to be optimized)

The shade and degree of continuity of the baseband window affects the extent

to which multlple _u_ carriers can be packed into a given ..... _=_ _ ^

v(t) determines bandwidth efficiency or crosstalk performance. In a digital

system, windows of different shapes can easily be stored in programmable read

only memories (PROMs).

Interchannel and co-channel interference can be expressed as sum-

mations of signals of the same format as the desired signal. By definition,

they have arbitrary relative amplitudes, symbol timing, and frequency and

phase offsets, except for the co-channel interfering frequency which is the

same as that for the desired signal carrier. In this model the data rates of

all the interfering signals are the same as the desired signal data rate. The

usual channel noise is taken as zero-mean AWGN with a single-sided power

spectral density of N O •

The coherent, correlation receiver statistic is the real

(imaginary) part of r n for determining the bn'S for n even (odd), where
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_(n_1)Tr -
n (n-1)T

[s(t) exp(jmt) + (interchannel interference)

+ (co-channel interference) + AGWN] v(t) exp(-j_t) dt

(3.8)

and the decision rule is

/-

= / + /_, Re (r n) > 0
b n

- J_, Re (r n) < 0

, n even
(3.9a)

/-

= _ + _, Im {r n} > 0
b n

- J_, Im {r n} < 0

, n odd. (3.9b)

Statistical independence among user signals, types of interference,

and random variables representing data symbols is assumed. Relative signal

amplitudes, symbol timing, frequencies and phases, and the neglect of sum-

frequency terms are also assumed. In what follows, sin A.T is an odd function
• 1

of T and cos A.T and p(T) are even functions of T.
1

It can be shown that ensemble averaging yields a mean and variance

of

_ = _ bn, n even
rn 4_ n odd

k. "_n"

(R {rn} - bn )2, n even
e

2

(I _{rn} - b ) , n oddm n

k

__ ; cosATd ÷
. l
i 0

-- 2T 2 NO

where the autocorrelation function of the baseband window is

T

_T v(t + T)v(t)dt, ITI _ 2T
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where the radian frequency offset of the ith crosstalk term is

A = _. - _ (3.1 2)
1 1

w m

and where ATI and BYK are the second-order, moments of the. ith interchannel and
kth co-channel interfering signal amplmtude random varmables, respectively

_ne effective SNR is defined as the magnitude squared (E b) of the

mean of Equation (3.10a) divided by the variance of Equation (3.10b). In the

absence of crosstalk and co-channel interference, this would be 2Eb/N 0 which

is the correct SNR at the output of a coherent correlation recemver for

antipodal elementary signals in AWGN.

For simplicity of calculation it is assumed that there are I (even)

interchannel interferers all of second moment _.2 = A 2 and carrier offsets

selected as follows l

I

A i ¢ {e A, * 2A, ,..._ yA}
(3.13)

around the des_d signal carrier, and K co-channel interferers with the same

second moment B_ = B 2 = A2Z 2, where Z 2 is determined by interbeam isolation.

With the mean-square crosstalk from the ith interferer at the same amplitude

but Ai/2w Hz away from the desired signal

2T

1 p2
C(A i) = _ f (T) cos AiT dT (3.14a)

0

the effective SNR becomes

SNRef f =
I/2 . . N O

2A z [ C(mA) + KA_Z_C(0) + 2E--_
m=1

(3.1 4b)

3.5.2.1 Typical Crosstalk Results

Let r be the code rate (so far, r = I), i.e., the ratio of the

number of bits into a coder to the number of bits out of the coder. 1"ne

normalized carrier frequency spacing is defined as

A-r (3.1 5)
8 = 2_R "
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(Note that R/r is the burst rate in b/s.) Then typical crosstalk levels for

SQPSK, MSK and sinusoidal frequency shift keying (SFSK) are as listed in

Table 3-3 along with an optimum window [Eaves, Wheatley, 1979].

Typical crosstalk levels from a single interferer should not exceed

approximately -30 dB to ensure no more than a I dB degradation in performance

compared to AWGN only [White, 1977] [Kalet, 1977]. Since crosstalk scales

linearly with A 2, this implies that only crosstalk values in Table 3-3 below

about -40 dB would be acceptable with a 10 dB larger interferer.

Oh the other hand, there is no point in selecting a crosstalk level

much below the quantization noise level in a digital implementation. For

purposes of comparison, the variances of quantization noise for a real signal

of unit amplitude are listed in Table 3-4 for one to eight bits of quantiza-

tion. Thus, at least 5b, and probably 6b, of quantization would be

appropriate for A 2 = 10 and about a I dB crosstalk-induced degradation in

B/N 0 for a given BER.

3.5.2.2 Methodology for Determining Channel Spacings

An example is used to illustrate the procedure for determining the

necessary carrier frequency spacing between unsynchronized signals of the same

type traffic, modulation, and data rate. Suppose R = 300 kb/s uncoded (r = I)

data is to be communicated with a BER of Pb 4 10-6" This requires an Eb/N 0 of

10.5 dB in AWGN only as determined from the standard BER curve for antipodal

signals of probability of bit error

Pb = --!--1 f

/_- _ 2Eb/N 0

exp (-x2/2) dx
(3.16)

as a function of Eb/N 0.

It seems to be good design practice to ensure that the AWGN term in

the denominator of _quation (3.14b) dominates the crosstalk and co-channel

interference terms. Toward this end we restrict the degradation beyond that

of AWGN only performance, to a factor L > I (say, L = 1.26 = 1 dB). Assuming

a balanced design where the crosstal_ and co-channel interference terms are

equal, we must have

I&2/ L - I
CCmA)

m=l 8A2(Eb/N 0 )

(3.17a)

Z2 _ L- I

4KA2C(0)(Eb/N0 )

(3.17b)

3-29



Table 3-3

Crosstalk Level C(2wR S/r) (dB) from

Equiamplitude (A 2 = I) Interfering Carrier BR/r Hz

Away in Frequency

6

Modulation 0.0 I°0 I °5 2.0 2.5 3.0

SQPSK -1.75 -16.0 -19.0 -21.5 -23.5 -25.0

MSK -2.32 -21.5 -30.6 -36.2 -40.4 -43.7

SFSK -3.09 -16.4 -22.6 -33.9 -41.1 -56.1

Optimum -22.1 -31.6 -46.0 -48.3 -59.1

C(0): -2.16 -2°41 -2.64 -2.73 -2.95

N,B° _ne C(A > 0) values are 6 dB larger than those of

Table I in [Eaves, Wheatley, 1979] because of a

different normalization on p. We calculated the C(0)

values.

Table 3-4

Quantization Noise for Real Signal of Unit Amplitude

Number of Bits (b)

.LIA %_._ CL1A L..L _ 0. %...L'OI A

Quantization Noise

-2b/ 2"'--_ .... 2 , IA=%

1 -16.8

2 -22.8

3 -28.9

4 -34.9

5 -40.9

6 -46.9

7 -52.9

8 -59.O
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Now suppose that L = 1.26, and that A2 = 10 represents a rain fade
in the desired signal of 10 dB comparedto all the surrounding signals. Next,
suppose that there are K = 4 adjacent antenna beamcells operating at the same
frequency which introduce significant co-channel interference. Computing
C(0) = -3.1 dB for the selected modulation, say SFSK (see Table 3-3), the
r@quired interbeam isolation can be determined from _quation (3.1 7b) to Me
Z2 < - 35.3 dB for Eb/N0 = 10.5 dB. This must be accomplished by a combina-
tion of beam separation, beam shaping and cross-polarization. (See Section
3.6.)

Similarly, a carrier frequency separation must now be selected so

that the crosstalk interference satisfies, cf., Rquation (3.17a)

I/2
(3.18)

C(mA) 4 -35.3 dB •

m-1

From Eaves and Wheatley's crosstalk curves for equal amplitude users and SFSK,

it can be seen that only the first (m = I) term is significant, and that

(C(A) = -35.3 -6 = -41.3 dB, with their normalization) 8 " 2.2 is sufficient.

This means that without additional channel filtering, the 200 kb/s data chan-

nels can be spaced no more than 200 8 kHz = 440 kHz apart.

The crosstalk curves also show that MSK has less crosstalk than

SFSK for 8 _ 2.3. In this instance MSK yields a 8 of about 1.9, or a channel

spacing of approximately 200 8 kHz = 380 kHz. The so-called optimum window

does considerably better; the window with a - - 0.05, cf. Bquation (3.7d),

requires 8 " 1.6 or only a 320 kHz separation.

3.5.3 Specification of Rain Margins

Recall that A 2 = AT represents the average power of an interfering

signal at a receiver relativelto the desired signal. This quantity is called

the residual fade margin because it is assumed that some form of network

control compensation for rain attenuation may already have been made.

Compensation would be necessary if the required center frequency spacing or

interbeam isolation implied by a large A 2 cannot be achieved within the al-

located bandwidth or spacecraft antenna implementation, respectively. On the

other hand, exact compensation may be infeasible because of imperfections in

measuring rain attenuation and the sheer complexity of perfect network

control.

The smaller A 2 is, the smaller are the crosstalk and the co-channel

interference. Strategies for minimizing and estimating A 2 are discussed in

the following paragraphs.

3.5.3.1 Key Ideas and Issues

The centralized assignment of the carrier frequency of each channel

transmitted is a basic notion. The key idea for minimizing A 2 with respect to

the vast majority of signals is to further constrain carrier frequency assign-

ments so that signals of roughlv the same strength occupy any portion of the

frequency band. Thus, the frequency assignment problem for minimizing A 2 on

FDMA uplinks may be reduced to that of compensating for differences in uplink
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fades from different terminal locations. Proper frequency assignment could

therefore permit the maintenance of an A 2 within the uplink rain fade

compensation error, at least locally in any sub-band containing the center

frequencies of a few adjacent signals. _nis may be adequate since it is only

necessary to maintain a reasonably small A 2 within one or two adjacent signals

with the low crosstalk modulations being contemplated.

Co-channel interference will be affected mainly by differences in

uplink fade compensation errors among different beam locations. It remains to

estimate rain fade compensation errors based on rain statistics for the

various beam areas and representative power control strategies. Before doing

this, a few practical issues are considered.

Downlink fading can be compensated by using power diversity in

several ways. The most specific method is to further amplify only the

affected signals before transmission either at the satellite or at the

terminals (for a non-processing satellite).

Practical difficulties of hardware proliferation and protocol

complexity can arise if there is an attempt to compensate downlink rain fades

exactly. For example, the number of downlink power amplifiers in a beam must

be finite, which implies an equal number of possible instantaneous gains. It

would be desirable to be able to adjust the gain of each amplifier so that no

amplifier is idle for want of signals needing the proper gain factor.

Another issue concerns the fact that the crosstalk and co-channel

interference model presented earlier applies only for signals of the same data

rate. In practice, it may be convenient to determine center frequency assign-

ments in such a way that signals adjacent in frequency are not necessarily at

the same data rate. In this case, it is not clear what the center frequency

spacing should be between a given signal already assigned and a newly assigned

signal at a different data rate. Since the higher rate signal would tend to

produce more crosstalk in the band of the lower rate signal than the reverse,

the center frequency spacing should probably be governed by the higher rate

using the crosstalk model. This will not be as bandwidth efficient as the

procedure of assigning signals of approximately the same data rate, as well as

power level, to the same part of the frequency band. Both approaches should

be tried through simulation and experiment, not only to test the validity of

the crosstalk model but to also establish the more attractive operational

procedure.

3.5.3.2 Optimization of Relative Uplink Margins

Attention now returns to the task of minimizing and estimating A 2.

Rather than computing a true mean of the relative power level of interfering

signals nearby in center frequency, a more pessimistic viewpoint is adopted.

Let only the desired signal be attenuated by uplink rain at a 0.995 level of

link availability, a value considered acceptable for Customer Premises Service

(CPS) traffic [MITRE, 1981]. Nominal uplink attenuations for the seven

regions of CONUS according to a Crane model [Crane, 1980] are shown in Figure

3-7; thirty degree elevation angles are assumed. A conservative estimate of

A 2 for each region is computed as follows.

Let Pr be the ratio of the traffic from region r to the total

traffic from all regions. These ratios will serve as probabilities that
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determine the likelihood of an adjacent signal from each of the seven regions.

Let F r denote the loss factor due to uplink rain fading of a desired signal in

reglon r, e.g., the ra%n attenuation is expressed as 10 log10 F r (dB) in

Figure 3-7. Let M r be the relative margin or factor by which power is boosted

by each terminal in region r relative to a nominal uplink reference power.

Therefore, if a desired signal from region s starts with margin M s but

experiences an uplink fade Fs, and if an interfering signal from region r has

a margin M r but is unfaded, then the relative power of the interfering to

desired signal at the satellite is MrFs/Ms; the average relative power for

that desired signal is

s
A2 = I PrMrFs/Ms = _-- I PrMr
s

r s r

(3.19)

The _bjective here is to select the unknown margins M r to minimize the average
of A over the seven regions, again weighted according to the probabilities

Ps" SThus' the margins M r will be optimized to minimize

F

A2 =I PA2 _ Psi; PMs s r r
s s s

(3.20)

by using Equation (3.19).

respect to Mk, one obtains

Zeroing the derivatives of Equation (3.20) with

dA2 _
0 - - [ PM

dMk M_ r%k r r

F F kr

=Pk_ PrM
r r _

F
s

+ Y. vs _- vk
s%k s

M , for all k.
r

(3.21)

One solution of Equation (3.21) arises from setting each term to zero, i.e.,

= _F_ r Mr, for all k.

By substituting Equation (3.22) into Equation (3.20), A 2 becomes

(3.22)

M ¢_--

2 I7. r I I rA = P P F - P P F
sin s r s r s Ms s r s r s _--

s

= 7. PS /_s I Pr _r = _ Ps /_s 2 .
s r s

(3.23)
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This corresponds to a minimumbecause the second derivatives of the objective
function are positive, i.e.,

d2A2 2PkFk
- [ P M > 0, for all k. (3,24)

d_ _ r$k r r

The first part of Equation (3.21) is used, and Pr' Fr' and Mr are all positive
quantities.

The optimum (relative) margins are determined by selecting an
arbitrary reference value of unity for Region B (r = I), and setting r = 2 for
Region C for example, and using Equation (3.22):

M 1 = I and M 2 = _F2/F I = /3.16/1.26 = 1.58 = 2dB.

The other margins determined by using F_uation (3.22) are shown in Table 3-5

along with F r and specificA_ _ (for a CPS traffic model based on population
density [MITRE, i981]) and

r

The main conclusion of this analysis is that A 2 = 10 dB is an

excellent value to employ in the modulation and coding model of crosstalk and

co-channel interference. (See Equation 3.14b.) This value is conservative

since it was computed by assuming that only the desired signal experiences up-

link rain fading and that center frequencies are not influenced by uplink

margins.

Given a beam plan and a traffic model, the Ar2 column of a table

like Table 3-5 may be used to determine the appropriate A 2 value to employ in

any uplink beam according to its region. Again, it is emphasized that the

effective A 2 values will be smaller to the extent that center frequencies are

assigned according to expected signal strengths at the satellite. The uplink

margins M r of Table 3-5 are good average indicators of relative signal

st_e,i_ths _xp_cted.

3.5.3.3 Downlink Rain

The rain attenuation problem is not as severe on the N20 GHz down-

link. [Hogg and Chu, 1975] and [Arnold et al., 1980] have evaluated the

attenuation due to rain at several frequencies and both conclude that the

attenuation (dB/km) at 18.5-19 GHz is approximately half that occuring at

28-30 GHz. The maximum downlink attenuation for a 0.995 availability should

therefore be approximately 10 dB in region E of Crane's model. _ne estimated

downlink fading by region is given in Table 3-6.

The compensation for downlink rain attenuation can be performed by

combinations of coding, higher terminal G/Ts, variable satellite EIRP (by

beam), power control, or large link margins.
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Table 3-6

Estimated Downlink Fading

Region

Index Region Probability Downlink Fade

r Name P_ F_*

I B 0.013 1.12 = 0.5 dB

2 C 0.068 1.78 = 2.5 dB

3 D I 0.074 2.0 = 3.0 dB

4 D 2 0 A=_ 9 _9 = 4.5 dB

5 D 3 0.094 3.55 = 5.5 dB

6 E 0.118 8.9 = 9.5 dB

7 F 0.170 1.33 = 1.25 dB

*CPS Traffic Model [MITRE, 1981]

**0.995 Availability, 30 ° Elevation Angle, 20 GHz
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3.5 •4 Intermodu lation

In an FDM system, in-band intermodulation (IM) products can arise

due to nonlinearities in the transponder HPA. Generally, the degradation in

SNR is due primarily to the third-order IM products. In a K-band system where

rain attenuation may result in a few weaker carriers in the band of interest,

the weak signals may not survive due to power robbing and/or suppression due

to IM interference.

Suppose the central carrier of I channels is assumed to be weaker

than the other carriers by y = A 2 (dB). Suppose the minimum acceptable

carrier to IM interference ratio (C/I) is Z (dP). Then if the weaker carrier

is to satisfy this requirement, each of the other carriers will have a C/I of

at least Y + Z (dB). This ratio may be difficult to achieve in a nonlinear

power amplifier unless the output power backoff is so great that the device

efficiency is unacceptable. On the other hand, if the backoff is limited to

provide some minimally acceptable efficiency, the weak carrier will not be

detectable with the desired reliability because IM interference in that

channel will be too large.

This is illustrated with the typical C/I vs. backoff characteristic

of Figure 3-8 [MITRE, 1981]. Suppose there are I = 10 carriers and that the

saturated output power of the amplifier is 20 W. Then each of the stronger

carriers would be allocated

20/(9+I0 -Y/10) w

and the weaker carrier would receive only

20/(I+9x10 +Y/10) W.

If all the carriers were of equal power, then A 2 = I and Y = 0 dB. This

implies that each carrier would receive 2 W of saturated output power and that

C/I = 14 dB, according to Figure 3-8. However, suppose that the minimum

acceptable C/I is Z = 16 dB. This would imply a 3-dB backoff for equal

carriers and I W per carrier.

Alternatively, a 6-dB backoff implies that the weaker carrier can

be no more than Y = 19.5 - 16 = 3.5 dB down for an acceptable C/I in that

channel. This corresponds to 0.24 W in the weak channel and 0.53 W in the

strong channels. If Y = 10 dB, then a 10-dB backoff is necessary to maintain

the weak channel quality. This would mean a C/I = Y + Z = 26 dB in the strong

channels, cf. Figure 3-8. _his corresponds to 0.022 W in the weak channel and

0.22 W in the strong channels. Unfortunately, a 10-dB backoff usually implies

an intolerably low power amplifier efficiency. Thus, the depth of the weak

signal may have to be limited to several dB in order to maintain acceptable

HPA efficiency.

To some extent, a regenerative satellite would solve this problem.

Each regenerated signal could be allocated equal power permitting less HPA

backoff. Alternatively, a separate HPA could be assigned to each channel.
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3.5.5 Error Correction Coding

At this point various options for error control coding are

discussed. The two usual types of linear codes -- block or convolutional --

as well as the choice between a hard-decision or soft-decision demodulator are

available. Throughout the discussion it is assumed that the channel is

memoryless, as will be the case for the relatively low burst rates and 30/20

GHz and above bands considered in this study. The first topic discussed is

quantization of the received signal.

In a binary system like MSK, the demodulator is said to have made a

hard decision if it decides that a 0 or I was sent by the modulator. An

unquantized decision is made when the demodulator determines the probability

of a 0 or I being sent directly from the received version of the elementary

signal. Between these two extremes lie the soft decisions wherein the

demodulator estimate of the signal must assume one of m discrete values.

Typically, m is a power of two. Receiver quantization destroys some of the

information which was presented to the receiver about the data; the coarser

the quantization, the more information is lost. As has been shown [Viterbi,

Omura 1979] usually less than 0.25 dB is lost with 3-bit (m = 8) quantization

compared to unquantized decisions, while hard decisions typically imply a loss

of between 2 and 3 dB. Note that finite quantization is required by any

digital implementation of a decoder. Quantization is usually done uniformly

although this is not necessary.

When the interference is AWGN, a quantized receiver constitutes a

discrete memoryless channel which can be chracterized by its transition

probabilities; that is, the receiver must be able to determine the probability

of obtaining each quantization level for either 0 or I being sent. _hese

probabilities depend on noise background and signal level. Thus, in order to

make use of soft decisions, the receiver must employ some form of AGC. Not

needing AGC for hard decisions is an advantage of a hard-decision receiver for

antipodal signals like MSK. _he baseband complexity of terminal receivers can

be simplified if no downlink coding is required or if hard-decision decoding

is adequate.

Block codes can operate at very high speeds and can be chosen to

make error rates quite low. A 100 Mb/s Reed-Solomon decoder can be fairly

inexpensive to build [Berlekamp, 1980]. However, the well known algebraic

decoding techniques for block codes force the demodulator to mak_ h_Ld deci-

sions, since the decoder requires 0s and Is in order to operate in a finite

field. Although there is still a coding gain, at least for reasonable SNRs,

there is a 2 dB loss when the Reed-Solomon decoder is compared to an

unquantized decoder.

Block codes or convolutional codes, either linear or nonlinear, can

be decoded with soft decisions via correlation decoding, which compares the

quantized version of the received signal with each possible codeword and

chooses the codeword which is closest in some predetermined metric. _nis

method is impractical for any but the smallest codes since the work factor is

proportional to 2k, where k is the number of information bits per codeword.

Many ideas have appeared in the literature on methods of approximating

correlation decoding with soft decisions via algorithms which are claimed to

be faster and easier to implement. The greatest drawback of such algorithms
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is that they are still fairly slow and expensive and require significant pro-

cessing. For this reason, it is asumed that a block code would make hard

decisions using an algebraic decoding algorithm.

For comparison purposes, the ten error-correcting Bose-Chaudhuri-

Hocquenhem (BCH) (127,64) code and the (24,12) Golay code have been selected.

The latter is capable of correcting all codeword error patterns of less than

four bits and 8855 of the 10,626 possible error patterns of weight four, i.e.,

a complete decoder instead of the more usual bounded distance decoder is used.

As is shown in Figure 3-9, the BCH code is superior for the range of BERs from

10-7to 10 -2 . _ne decoding of the BCH code is easily accomplished via the

Berlekamp-Massey algorithm [Massey, 1969].

A convolutional code (CC) of constraint length K, memory M = K-l,

and rate r = I/2 consists of a K-stage shift register which has two sets of

taps, each with a different ouput, which are interleaved to produce a code-

word. The results presented for a certain constraint length do not hold for

all CCs of that length, but only for the non-catastrophic codes with maximal

free distance. The maximal free distance, a nondecreasing function of the

constraint length, determines performance. As a result, an increase in

constraint length can lead to a better code. However, the traditional maximum

likelihood decoder -- the viterbi algorithm -- has a work factor which is

proportional to 2K. Thus, increasing the constraint length, while increasing

the maximal free distance, makes the decoder more complex as well as slower.

The constraint length K = 7 is generally accepted as a good compromise between

free distance and decoder speed and complexity.

One of the great advantages of CCs is that the Viterbi algorithm

can be applied not only to the hard-decision channel, but also in the

quantized output of a soft-decision demodulator. As shown in Figure 3-9, the

BCH (127,64) code requires slightly less Eb/N 0 than the K = 7 CC on a channel

with hard decisions. However, on the 8-1evel quantized channel, the CC

achieves more than a I .5 dB advantage over the BCH code.

The error curves for the CCs are obtained via the union bound on an

unquantized channel and the Viterbi algorithm. However, the original

algorithm requires large memory since a decision is made on the entire mes-

sage. Traditionally, the path memory (the length of the path through the

code's trellis) _s trnncated at roughly four times the constraint length, or

about 32 bits for K = 7. Tnat is, a decision is made, at a certain time, on

the bit which was sent 32 bit-times earlier based on all bits received in

be twee n.

Heller and Jacobs did extensive simulations of CC performance with

8-1evel quantization and 32-bit path memory (Heller, Jacobs, 1971). _he

results show a loss of only 0.25 dB compared to the theoretical performance

without quantization and with no path memory truncation. This suggests that

the K = 7 convolutional code would provide very good performance.

It is felt that error rates from 10 -6 to 10 -2 and reasonable data

rates can be handled quite well with the convolutional code. However, block

codes could also be considered.

As seen from the net fade column of Table 3-5 and the 3 to 5 dB

coding gains (K = 7, r = I/2) of Figure 3-9, uplink convolutional coding and
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Viterbi decoding in the satellite can essentially compensate for excess fading

except in the rainiest Region E, where coding cannot overcome an average net

fade of 10 dB. This suggests that the uplink margins be increased uniformly

by roughly 5 dB and that uplink coding would be required only for terminals in

the southeastern U.S.; soft decision decoding would be required in the satel-

lite only for Region E.

The fades on the downlink can be as much as 9.5 dB (see Table 3-6).

To compensate for this fadinq, either 9.5 dB of additional margin would be

required or 3 dB margins could be used to provide 64% of the U.S. at least

0.995 availability. _ne southeastern third of the country would need either

more downlink power or soft-decision decoding to make up the necessary margin.

3.6 MULTIPLE SATELLITE BEAMS

In this subsection the theory of multiple beam patterns, interbeam

isolation, and frequency reuse are discussed. Implications for the spacecraft

realization of on-board power and multiple beam antennas are also developed.

3.6.1 Definitions

Assume that the geographic coverage of a single satellite beam cell

is defined by the physical area (footprint) where the received signal does not

vary by more than X dB of the peak gain, where X is a constant in the 3 to 6

.... _ ............ __ area of the cell is enclosed by the X dB-down _-_,_r,

see Figure 3-10. The -X dB contours touch each other and form a multiple beam

pattern of cells.

If adjacent cells use the same frequency, significant signal inter-

ference will qenerally result. However, cells which are farther away may use

the same frequency with some tolerable level of mutual interference. The

situation can be visualized by selectinq designs (frequency plans) for the

cells; all cells using the same frequency will be of the same desiqn. Example

cell designs will be shown later.

3.6.1.1 Beam Isolation

If d is the angular distance between the centers of two beams, and

if G(8) denotes the gain of each singlet beam as a function of beamwidth 80

_efined by the X-dB down contour; th_n the _nlati_n between the beam patterns

of Figure 3-11 is defined as

G(8012)

I(d) = G(d_80/2 ) = G(0) - X - G(d-80/2) (dB) . (3.24)

3.6.1.2 Cross-Polarization

Different polarization assignments of the radiated beams may be

used to increase the isolation as we shall see in later examples. Cross-

polarization isolation, usually employing orthogonal vertical and horizontal

polarizations rather than left and right-hand circular polarizations, is

limited to roughly 20 dB at 30/20 GHz [Arnold, et al., 1980].
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3.6.1.3 Frequency Reuse

Multiple beam satellite antennas allow: I) earth terminals to have

lower values of effective isotropic radiated power (EIRP) and gain to noise

temperature ratio (G/T), which is very desirable for small earth stations; and

2) frequency reuse.

Two links will operate with acceptably low mutual interference on

the same frequency if the isolation between them is sufficiently large. If

the allocated bandwidth for a particular satellite system is W, frequency

reuse increases the effective bandwidth to FW, where F is the frequency reuse

factor defined as

F = M/N, (3,25)

where M is the number of beams, and N is the number of designs or disjoint

frequency bands.

The factor F should be as large as possible, i.e., for fixed M, N

should be as small as possible. However, a small N means less isolation

between the beams.

The number of frequency bands, N, imposed by the beam isolation

will also depend on the system requirements. These, in turn, will be

determined by the desired link quality and the type of modulation, since some

modulations are less _,_=,e_h1= e_ _n-_hann_l interference.

3.6.2 Close-Packed Circular Cell Arrays

Consider the four-design example of Figure 3-12 where the cells are

packed close together to reduce gaps in coverage above the X dB-down gain

level. As shown in Figure 3-12A, the smallest distances between cells of the

same design are

dl = /_ @0 (3.26a)

d 2 = 2 @0 (close packed; N = 4), (3.26b)

d3 = _ 80 (3.26c)

where 80 is the single cell beamwidth. If horizontal (H) and vertical (V)

cross-polarizations are used as indicated in Figure 3-12B, then typically d 3,

the shortest distance between cells of the same frequency band and polariza-

tion, will determine the minimum interbeam isolation according to Equation

(3.24).

A non-symmetrical array like that of Figure 3-13 may be needed to

achieve a specified isolation. However, this cell pattern would require two

more frequency bands than that of Figure 3-12.
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3.6.3 Satellite DC Power Implications

The relationship between antenna beam cell size and the DC power

required on the satellite is investigated in this subsection. It is assumed

that user terminals are distributed uniformly throughout the coverage area and

that each beam is driven by a dedicated traveling wave tube (TWT). Two cell

sizes of 1.2 ° and 0.6 ° beamwidths are considered in the following examples.

It is shown that the 0.6 ° cells lead to better frequency reuse, i.e., more

users can be served, and that less DC power is required on the satellite.

Smaller beams provide greater antenna gain but imply a larger number of beams

for CONUS and a more complex spacecraft antenna implementation. The exchange

of a larger antenna for lower power is considered to be a favorable trade-off

in spacecraft weight.

Recall that N is the number of disjoint frequency subbands used in

a multiple beam plan of M individual beam cells and that F = M/N is defined as

the frequency reuse factor. Let U be the number of simultaneous users, and

let B be the bandwidth available to a single user. A nominal total bandwidth

of W = 100 MHz is taken as fixed. It is apparent that bandwidth is conserved,

i.e., BU = WF, or

W W M
U = -- F - • (3.27a)

B B N

The number of users per beam is

U W 1
u .... (3.27b)

M B N

The two beam/frequency plan examples considered are shown in

Figure 3-14A and 3-14B. The following assumptions are common to these 10 and

40 beam CONUS coverage plans: Each user is characterized by an R = I Mb/s

signal occupying B = 1.25 MHz, and a single-channel earth station with a 2 m

diameter antenna and a T = 1000°K system noise temperature. The satellite is

assumed to be a collection of transponders in this case (no on-board demod/

remod) with a DC to RF power conversion efficiency of _ = 10%, and a power

amplifier back-off BO = 3 dB. (A power back-off is required to reduce inter-

modulation interference.)

Suppose the desired signal-to-noise ratio (SNR) is Eb/N 0 = 8.5 dB

and there is an implementation loss of L = 3.5 dB. Then the required overall

carrier-to-noise ratio (CNR) is approximately

C/N 0 = (Eb/N 0) L R = 72 dB-Hz.
(3.28)
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For the 80 = 1.2 ° cell of Figure 3-14A, suppose the CNRs for the uplink and
downlink are

C__ = 79 dB-Hz and C = 73 dB-Hz (3.29)

NO u NO d

(The uplink is 6 dB better to provide for more rain margin.)

since

1 1 1
__. . + . (3.30)
C C C

N O N O N Ou d

A simple downlink budget calculation shows that for a I Mb/s user the RF power

at a satellite TWT output is

(EIRP) d (C/N0) d k LdT
P = _-

Gsd Gsd Ged

= 73 dB-Hz - 228.6 dB-J/°K + 210 dB + 30 dB-°K

- 42.7 dB - 49.8 dB

= - 8.1 dBW = 0.155 W. (3.31)

Here k = 1.38 x 10 -23 J/°K (Boltzmann's constant), L d is the downlink path

loss at 20 GHz, and Gsd and Ged are the spacecraft and earth station downlink

antenna gains, respectively. Therefore, the total satellite DC power in this

case is (The BO factor is retained assuminq it is desirable to have the

capability to saturate the TWT.)

(BO)PRF (BO)(UP)

PTDC = M PDC = M D n

(BO) W M p = 830 W , (3.32)
n B N

where PDC and PRF are the satellite DC and RF powers per beam The number of
simultaneous users served is U = Mu = 267, from Equations (3.27a) and (3.27b).
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With the 80 = 0.6 ° cells of Figure 3-14B, the uplink satellite

antenna gain is 6 dB larger. Since nothing else has changed to affect the up-

link power budget, (C/N0) u = 85 dB-Hz, cf., Equation (3.29). Now only about

(C/N0) d = 72.2 dB-Hz is required to maintain the desired C/N 0 of 72 dB-Hz,

according to Equation (3.30). Since Gsd has also increased by 6 dB in this

case,

P = -8.1 - 0.8 - 6 dBW = -14.9 dBW = 0.032 W .

The total satellite DC power drops to PTDC = 512 W, usinq Equation (3.32),

since M = 40 and N = 4. In this case, U = 800 users are served.

Since PTDC is proportional to the total data rate UR, the satellite

DC power consumption is constant for a fixed total data rate. The principal

conclusion is that the 40-beam system can serve three times the users with 62%

of the spacecraft power compared with the 10-beam system. Two-meter earth

terminals spread uniformly over CONUS can even be supported by a single 1985-

vintage satellite using 1982 technology which promises 5 kW of DC power.

3.6.4 Implementation Considerations

A 80 = 0.3 ° beamwidth is chosen as an example to provide a satel-
lite antenna sufficient to support a relatively heavy traffic volume and to

minimize interbeam interferences. Signals originating in or intended for one

area in a given frequency band msst not be intercepted at too high a level in

another beam using the same band; unacceptable co-channel interference would

result. Thus, the sum of the in-band sidelobe powers from all other beams

(four, say) falling in any footprint should not exceed about -30 dB relative

to the peak gain of the beam (see Subsection 3.5.2.2).

The co-channel interference requirement will be the driving

consideration in this example antenna design. Other considerations include

beam distortion and minimization of the number of antenna reflectors that the

spacecraft must carry. Tne continental United States (CONUS) subtends an azi-

muthal angle of 6.8 ° and an elevation angle of 3.0 ° from a geostationary

satellite located at 90°W longitude. Thus, for single-satellite coverage if

the axis of a satellite-borne r_fl_tor were aimed at the center of the

country, the extreme beams would have to point 3.4 ° east and west of the axis

if all beams were to emanate from one reflector. (Note that Figure 3-14

covers only about 6.2 ° by 2.1°.)

3.6.4.1 Coma

When a beam is pointed (scanned) off axis in a reflector, coma

distortion results, i.e., the antenna pattern sidelobes become wider and

higher. The first lobe joins the main beam on one side of the antenna

pattern, thus reducing gain and increasing the potential for beam inter-

ferences. A well-known rule [Silver, 1949] states that the limit for scanning

a beam off the axis of a reflector is five beamwidths before coma becomes too

severe. This would be 1.5 ° for 0.3 ° beams, casting doubt on the azimuthal

coverage of the country by one antenna using this beamwidth. Two reflectors,

one for the eastern half and the other for the western half of the United
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States, could help. However, different size reflectors would be needed for

the uplink and downlink satellite beams. Using two reflectors for the down-

link beams and two for the uplink beams will give the satellite a complement

of four reflectors.

Coma can be reduced by locating feed-horns radially out of the

focal plane. Therefore, a design study might be carried out to determfne

whether only a single reflector could be used for all downlink beams and

another single reflector used for all uplink beams. This is an effort of some

magnitude and is beyond the scope of the current study.

3.6.4.2 Number of Reflectors

Spacecraft antenna complexity could be reduced if the same set of

feed-horns could be used for both uplink and downlink beams. There is no

barrier to diplexing the uplink and downlink frequency bands onto the same

horn. However, the fixed horn aperture will give a different beamwidth from

the horn for each band, and one of these necessarily will inefficiently

illuminate a reflector of the size needed to give a 0.3 ° beam. In order to

design an effective antenna, the designer must be able to control both the

reflector and the horn aperture, i.e., there must be freedom to design the

uplink and downlink antennas independently. Thus, the hope of having only two

reflectors depends on the success of a program to reduce coma by refocusing.

Beam interferences are not affected whether or not refocusing is successful.

A requirement of two reflectors each for both upiink and down, link will not

change the principles discussed below.

3.6.4.3 Reflector Illumination

As already mentioned, the reduction of beam interference requires

low sidelobes in each beam pattern. This can be accomplished by illuminating

the reflector most intensely at the center and tapering off the intensity

toward the reflector edges. Illumination taper is controlled by the primary

beam from the illuminating horn. If a narrow beam is achieved by using a

larger opening on the horn, then the intensity, high at the center of the

reflector, will drop off enough at the edges to give low secondary beam side-

lobes. Thus, large horn apertures may be required, and it is necessary to

determine what horn aperture sizes a given beam system permits.

Each beam _equ Ke_ a separate ..v_... .......

relative to the axis of the reflector in the same way as the beams, but in

mirror image locations because of the laws of reflection. Thus t we may speak

of relative horn positions just as if the beams were the horns. Horns located

at adjacent angular positions can be enlarged until the horns just touch.

That and the lowest downlink frequency, 17.5 GHz, determine the largest

possible horn size. A reflector diameter of 4 m is needed to produce a 0.3 °

beam at this frequency.

A common value of focal length to diameter ratio for reflectors is

0.5. Thus, the focus of the reflector is expected to be 2 m from the vertex.

Horns will be positioned on a surface at approximately this distance, and the

angular separation of the horn centers of two touching beams will be 0.3 °

subtended at the vertex of the parabola as shown in Figure 3-15. The arc

length corresponding to this angle will also be the aperture opening of the
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horn. This is found from the relationship among radius and angle to be s =

1.05 cm. The question next arises as to how much amplitude taper a horn

aperture of such a size produces. This requires a formula for the pattern of

a horn.

A simple closed form for the pattern of an electromagnetic horn

does not exist; the phase front curvature emanating from the horn does not

lead to mathematical functions integrable in closed form. However, if the

horn sides are not flared at too wide an angle, a condition easy to satisfy

with the small horns used in the 30/20 GHz band, it is possible to derive an

approximate formula.

The formula is accurate enough for finding amplitude taper on

reflectors when the curvature of the phase front in the horn aperture is less

than a quarter wavelength, I/4 (4.3 mm at 17.5 GHz). Then, the phase front

may be taken to be plane which leads to integrable functions.

As indicated in Figure 3-15, let the horn have a square cross-

section s = 1.05 cm on a side. Let _ be the angle between the central horn-

reflector axis and the line of length r from the horn aperture... ,t° the point on

the reflector where the relative electric field intensity V = IE(_)I/IE(0)I
is

measured. A simplified approximate expression for V is [Wolff, 1966]

6_s _: __sin
(I + cos#) _--f

_.L IL{_ J

(3.33)
V =

r(_) wS
--_ sin_

The lowest (downlink) frequency, f = 17.5 GHz (l = 1.7 cm), in the 30/20 GHz

frequency band yields the worst-case for (zero) horn separation, i.e., s/l =

0.61. Given _, r is a solution to the quadratic equation

r 2 sin2_ + 8m r cos_ - 16m 2 = 0 (3.34)

Table 3-7 shows that the illumination taper produces a level only

7.6 =" dow,_ --_-_:--- t_ _ .... _ rA _ n% _h_ _n_r_ _rn nf a 4 m

antenna illuminated by this distribution may be deduced using the well-known

family of patterns [Sciambi, 1966] for a round aperture derived from an

in-phase illumination with amplitude distributed according to the parametric

formula

V 2 + (I - V 2) [I -(_)2]p
(3.35)
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where

V 2

Y

Y

P

is the uniform component of aperture illumination which is

also the relative intensity at the edge (V 2 = 0.17 for the

-7.6 dB of Table 3-7),

is the distance from the vertex axis to a point on the

aperture inside the outer circumference,

is the distance from the vertex axis to the aperture

circumference (or edge), and

is the algebraic power which determines how fast the intensity

falls off from the peak value.

Table 3-7

Aperature Distribution for 4 m Reflector and 1.05 cm Horn

at f = 17.5 GHz (_ = 1.7 cm)

r(_) 10 log10 v2

(rad) cos_ sin_ (m) V (dB)

0 I 0 2.0 I 0

0.64 0.8 0.6 2.2 0.64 -3.8

0.93 0.6 0.8 2.5 0.42 -7.6

The pattern resulting from the aperture illumination of Table 3-7

(curve fitting is used to find p) yields first sidelobes that are only about

21 dB down; the first two sidelobes are at too high a level for the addition

of sidelobes of several antennas to produce an acceptably low carrier-to-

interference ratio. It would be necessary to use a larger horn to further

reduce the sidelobes. However, the horns would clash if their apertures were

made larger.

3.6.4.4 Dual Focal Plane Technique

A second focal surface could be provided by using a polarization

sensitive reflecting/transmitting screen. The screen reflects vertical

polarization, say, and transmits horizontal polarization. The screen,

reflector, and horns are shown in Figure 3-16. An offset reflector is used so

that, although it has a 4 m aperture, the horns are below the reflector and do

not block the transmitted or received energy. Half the (rear) horns are

behind the screen but are horizontally polarized so their radiation passes

through to the reflector. _ne other horns are in front of the screen, and

their patterns reflect off the screen to illuminate the reflector properly.

These front horns are the same optical distance from the reflector as the rear

horns on the original focal surface. In effect, the screen provides two focal

surfaces so that the horns can be larger. Since half the horns are located on
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the front, and half on the back focal surfaces, the horns can be twice as
large or 2.1 cm in both a and b horn dimensions. Using _quation (3.33) with
s/l = 1.22, the amplitude taper on the reflector for this case is given in
Table 3-8.

Table 3-8
Aperture Distribution for a 4 m Reflector and 2.1 cm Horn

at f = 17.5 GHz (A = 1.7 cm)

r(_) 10 log10 v2

(rad) cos t sin# (m) V (dB)

0 1 0 2.0 1 0

0.64 0.8 0.6 2.2 0.26 -1 2

0.93 0.6 0.8 2.5 0.013 -38

The 2.1 cm horn provides a much lower edge illumination than the

1.05 cm horn. The secondary pattern shape can be estimated as before from the

class of canonical antenna patterns. Tne first sidelobes _,Luu_-_-'_=be _t_ _^_t

35 dB down as required in Subsection 3.5.2.2.

3.6.5 Key Beam Plan Interference Characteristics

Various beam/frequency/polarization plans can be devised for close-

packed beams of beamwidth 80. The purpose of this section is to tabulate the

key parameters

d ----- center-to-center beam separation for same polarization

and frequency subband

K(d) = number of interfering beams (with same polarization and

frequency subband) at distance d

for various beam plans with M beams, N frequency subbands, and frequency reuse

factor F = M/N. Most of the devised plans are not shown but see Figure 3-14

for the first two examples of Table 3-9.

Observe that for many interesting plans K(dmi n) is only 1 or 2.

This implies that the co-channel interference from a single beam need only be

at least 29 dB down and 32 dB down, respectively, to meet the criterion of

Subsection 3.5.2.2. Typically, dmi n will dominate the calculation of inter-
beam interference.
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Table 3-9
Number (K) of Interfering Beams at a Distance (d)

for Various Beam Plans

M N F d/e o K(d) 8 0 (CONUS coverage)

10 3 3.3

40 4 10

160 15 32

3 I

/T 2

2J_" 2

5 2

2,,P_" 1
2/'_" 1

1.2°(6 ° X 2.2 ° )

0.6o(6 ° X 2.2 ° )

0.3o(6 ° X 2.1 ° )

Infinite Tessellations:

3 _ 2

3 2

2/_ 6

4 _V 4

4 2

5 /V 2

2

5 /_ 2

2_" 2

6 /_ 2

2

6 2/_ 6
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SECTION4
TERMINALDESIGN

This section addresses the terminal design issues. The require-
ments for both supplier (provider) and subscriber (user) terminals are
defined, and baseline designs are presented. The design of the subscriber
terminals is emphasized, as they are the most constrained with respect to size
and cost. A high level block diagram of user terminal architectures is
presented, and various design tradeoffs are investigated.

4.1 TERMINAL DESIGN REQUIREMENTS

4.1.1 Subscriber Terminal

Subscriber terminals are the on-premises terminals that support the

users of the communications system. Large numbers of this type of terminal

could ultimately be installed, and consequently the cost of the subscriber

terminal is a key issue.

In order to minimize the cost of the terminal, the use of mature

technology is required. Unfortunately, at 30/20 GHz, little mature technology

exists. However, there is a definite state-of-the-art limit that has been

established. Nearly all of the components of the terminal have at least been

developed and demonstrated at performance levels required for the FSS, even

thouqh they may not have been produced in quantity. _nus, new technology

development is not needed in order to make the proposed system technically

feasible. To achieve economic feasibility, however, will require a maturiza-

tion of this technology. This maturization can be expected to happen natural-

ly. A simple terminal design placinq the least performance demands upon the

SHF/EHF components will aid in achieving this goal.

A consideration in the design of the user terminal is the single

versus multi-channel capability. A single channel terminal can accommodate

the bulk of the applications which are interactive in nature. However, to

support background processes such as batch file transfer, home security, or

utility meter reading, multi-channel capability would be required. Including

the multi-channel capability will of course increase the cost of the terminal.

The data rates required for home security and utility meter reading are quite

Inw; and co,_ h_ accommodated by low rate channels. It may be possible to

build a terminal with a single channel RF, where low rate secondary channels

are digitally multiplexed with the primary medium rate channel.

4.1.2 Supplier Terminal

The supplier terminals accommodate the providers of services via

the satellite network. It is via the supplier terminals that the services

accessed by the subscriber are made available on the satellite network.

Supplier terminals are necessary to provide interfaces between the

satellite network and other systems/networks, telephone systems, and services.

Thus, the supplier terminals must interface to a variety of special equipment

(i.e., computers, telephone network, billing equipment, etc.) in order to

provide the various services.
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Supplier terminals will also need to accommodate multiple users

simultaneously, and will thus be considerably more complicated than the user

terminals.

The cost of the supplier terminal is not as sensitive an issue as

for the subscriber terminal. A single supplier terminal can provide services

to a large number of users; the cost of the terminal can thus be spread ever

many users through access charges and/or usage fees. Furthermore, as the

supplier terminals will use much of the same technology as the subscriber

terminals, the cost of the supplier terminal will also fall as the cost of the

subscriber terminals are reduced.

4.1.2.1 Modules

Supplier terminals will ideally be built using many of the same

modules as for the subscriber terminals. This will reduce the cost of the

supplier terminals as they will benefit from the economy of scale enjoyed by

the subscriber terminal production.

A set of "plug-in" modules might be developed. Terminals for

different applications would be configured by selection of the appropriate

type/number of modules.

4.1.2.2 Interfaces

_%ereas the o,,_ _:_ ._m_ ,:i _ _,_=i i,, h_,_ _,I y a fpw

interfaces, supplier terminals will need to interface to a variety of

specialized equipment. Some of the interfaces likely are discussed below.

4.1.2.2.1 Telephone System

For the rural telephone service application, a gateway into the

public switched telephone network (PSTN) would be required. This gateway

allows the interconnection of telephone calls between the satellite network

and the PSTN.

For outgoing calls (originated by a rural user via satellite) the

gateway must establish a connection with the PSTN. The gateway maintains the

connection for the duration of the call. For incoming calls (initiated from

the PSTN) the gateway must establish a connection to the rural user via the

satellzte network. _^ _ .... * =1_ _,_o _, _or,,_ _ran_l_i_n _f

signaling between the rural user and the PSTN.

Depending upon the details of the system design, the gateway might

also be involved in requesting/relinquishing channel assignments.

4.1.2.2.2 Other Communications Networks

Interfaces into other communications networks might also be neces-

sary. For example, interfaces into networks such as Tymnet and Telnet would

be used by remote timesharing users. For banking transactions or electronic

mail, other networks might be involved.

Interfaces into these external communications networks will also

need a gateway. The operation of a gateway for any network is in principle

the same as described above for the PSTN. Specific details of operation, of

course, depend upon the protocols of the two networks being interfaced.

4-2



Adoption of recognized standards would considerably simplify the
interfacing of networks, and hence simplify the gateway design.

4.1.2.2.3 Billing Equipment

With most services, it is necessary to provide for determination of

the authorization of the user, and to provide some mechanism for charging t_e

user for use of the system.

The billing problem can actually be divided into two portions: the

bill for the use of the communications facilities, and the bill for the use of

the service provided via the communication facility. Currently, the trend is

for the cost of the communications facilities to be included in the cost of

the services. Examples of this are businesses which provide toll-free 800

numbers and include the cost of the 800 number in their basic fees; magazine

subscriptions include the cost of postage; cable TV subscription fees include

the cost of installing/maintaining the cable, etc.

Thus, it seems likely that the cost of the communications system

would be charged to the businesses providing services via the system. _'nese

businesses would in turn recover this cost from the users via their fees.

Thus, the billing problem would be addressed on an individual application

basis.

A variety of approaches are possible in addressing this require-

ment. One simple approach would be to charqe a flat fee for access to the

service. Thus, for the flat fee, the user would be given the proper keys to

access the service or the satellite network. At the other extreme, author-

ization for each transmission of a terminal could be verified, a record of

activity maintained, and users billed based upon their usage. In any case,

some interface between the supplier terminal(s) and a billing subsystem would

be required. Information taken off the air would be fed into the billing

subsystem which would verify access authorization and generate appropriate

usage fee bills. Ideally, the usage bills would be distributed and paid

electronically through the system.

4.1.2.2.4 Computers

Many of the applications involve direct access to a computing

system_ or req_!_r_ a computing system to implement the features of the

particular service. Thus, the main interface point for the supplier terminals

will generally be some sort of special purpose or general purpose computing

system.

For example, interactive videotext and database systems are

generally supported directly by a computer system. Each of the users are

essentially logged into the system and running a particular program which

provides the videotext service.

4.2 SUBSCRIBER TERMINAL DESIGN

The terminal design is described at a fairly high level,

independent of the particular network architecture selected. A high level

block diagram of the terminal design is shown in Figure 4-I. This high level

block diaqram is not affected by the particular system design selected, but

4-3



!

zl

I

!

!

I

ul

8,
I

I

-M

0
0

r-_

0

D

I

-M

.._8

4-4



the detailed functioning of the various blocks is dependent upon the overall

system design.

In the following paragraphs, the various components of the terminal

illustrated in Figure 4-I are discussed, and system design requirements are

translated into constraints on the components. Implications of various system

architectures are discussed relative to the terminal subsystems they would

effect.

Cost and technology constraints placed upon the terminal hardware

are discussed later in Sections 6 and 7.

4.2.1 Antenna

Two different antenna designs could be considered for the FSS:

parabolic dishes and phased arrays. Parabolic dishes consist of a passive

reflector illuminated by a feed located at the focus of the dish. The gain of

the parabolic dish is determined by the size of the passive reflector. Phased

arrays consist of a number of smaller antennas (i.e., dipoles) which are fed

in an appropriate phasing relationship in order to form the desired beam

pattern.

A phased array type antenna has the advantage that a conformal

antenna can be built. Thus, an antenna flush to the roof of a house is

possible, yielding obvious asthetic advantages. Unfortunately, phased array

antenna technology is quite immature at 30/20 GHz, and presently appears that

it would be prohibitively expensive [Dybda!, 1983].

Parabolic dishes are quite mature technology, and have been built

to operate at 30/20 GHz and above. Large numbers of antennas for the TVRO

industry operating at 4 and 12 GHz have been manufactured. Thus, a parabolic

dish antenna appears to be the most economical choice.

4.2.1.1 Size

The antenna provides for the transmission of the 30 GHz uplink

signal and reception of the 20 GHz downlink. A high gain/narrow beamwidth

antenna will be required in order to establish reasonable link margins and to

operate with close satellite spacing (assuming a 2 ° satellite spacing at

30/20 GHz). This results in a lower limit on the antenna size.

The minimum antenna size can be determined from the spacing

requirement. The receive requirements are most stringent, due to the reduced

gain/beamwid_ at the receive frequency. For adequate rejection of adjacent

satellites, the antenna gain should be down by at least 20 dB at the adjacent

satellite. The gain loss of the main lobe of the antenna (as a function of

the angle off beam center, 6) can be approximated by

(4.1)

where 80 is the half-power beamwidth [Frediani, 1978].

We solve this expression for the half-power beamwidth such that the

gain will be down 20 dB at a 2 ° angle (the assumed spacing). This yields a

minimum required half-power beamwidth of 1.5 ° •
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We can solve for the antenna diameter knowing that the half-power
beamwidth is related to the diameter, D, by,

00 = 70(_) degrees , (4.2)

where A is the receive wavelength (I = 1.5 cm at f = 20 GHz).

A minimum antenna diameter of 2.3 feet (0•7 m) is thus required•

Smaller antennas are possible if satellite spacing wider than 2 ° is used.

An upper bound on the antenna size also exists. It is highly

desirable that a fixed pointed antenna be used, thus avoiding the additional

expense and complexity of an antenna pointing/tracking system. For a fixed

antenna, there will be pointing errors due to errors in the initial alignment

of the antenna, and drift of the satellite. As the antenna diameter is

increased, the beamwidth narrows, and these losses increase. The transmit

requirements are more stringent, due to the decreased beamwidth.

To find the maximum antenna size, we use the same relationships as

above, although using the transmit frequency (_ = I cm at f = 30 GHz). About

f0.05 ° of satellite station keeping accuracy is expected for the ACTS satel-

lite [ACTS, 1986], so we will allow about 0.1 ° for pointing error due to the

combined effects of satellite drift and antenna alignment. We want the loss

to be less than I dB with this offset. Solving (4.1) and (4.2) for @ = 0.1 ° ,

and Lp = I dB, yields the minimum @0 = 0"35°' corresponding to a maximum
antenna diameter of 6.6 feet (2 m).

FCC requirements for earth terminals place constraints on the side-

lobe characteristics of the antenna• Tnese requirements should be fairly easy

to meet for these size antennas at 30/20 GHz. The antenna efficiencies

assumed allow for tapered aperture illumination as may be required in order to

achieve the required sidelobe levels.

4.2.1 .2 Surface Accuracy

The main lobe gain of the antenna is given by

9

G O = ll(__)_e -(411(;/)_)_
(4•3)

where D is the antenna diameter, and _ is the antenna efficiency [Ruze,

1966]• In the second term, _ is the RMS surface accuracy of the antenna

dish. At 30/20 GHz the surface accuracy of the antenna is quite important,

and this term may represent a significant loss. The loss due to surface

roughness can be expressed as,

2

L = 686r. u--] dB
r

(4.4)
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For losses due to surface roughness to be less than I dB at 30 GHz,
surface accuracies on the order of 0.015 inches or less are required.

4.2.1.3 Feed
The antenna feed acts as the collection point for receive power,

and the launching point for transmit power, which is reflected off the
parabolic dish. The antenna feed will probably need to be a dual 30/20 GHz
design, rather than two side-by-side feeds, due to the required tolerances.

Both centered and offset feeds are a possibility. Offset feeds
provide an advantage in reduced sidelobe levels, although we do not believe
this to be an issue.

Asymmetric antennas are also a possibility. The asymmetric antenna
allows the size to be increased in one dimension as required for close satel-
lite spacing, without needing to increase the size in the other dimension.
Such antenna designs have been built although not in large quantity, but
should present little risk.

The selection of the specific antenna design approach will be cost
driven. As center-fed parabolic antennas are the most commonfor massproduc-
tion applications (VSATsand TVRO), it is likely they will also prove most
economical for the FSSapplications under consideration.

4.2.1.4 Mount/Positioner

Some sort of antenna mount is obviously necessary. We have assumed

a fixed pointed system in order to reduce the cost of the terminal. Tnis is

consistent with the use of a geostationary satellite. The requirement for

fixed pointing does, however, result in an upper limit on the size of the

antenna (as pointed out above).

With a fixed pointed antenna, an adjustable mount is still

necessary to allow initial alignment of the antenna. In line with the

allowable pointing errors assumed above, the mount should allow positioning of

the antenna to within the 0.1 ° accuracy assumed.

4.2.2 Diplexer

receive signals. A diplexer consists simply of a pair (or more) of filters.

At microwave frequencies, the filters can be implemented by means of waveguide

cavities. These filters provide isolation between the transmit power going

into the antenna, and the receive power coming out of the antenna. Since the

receive signal level is considerably lower than the transmit signal, very good

isolation between transmit and receive is required in the diplexer. Typically

30 to 60 dB isolation is provided, with further filtering done in the

receiver.

4.2.3 HPA/Upconverter

The upconverter and high power amplifier (HPA) will frequency

translate and amplify the uplink signal to the frequency and power levels that

are provided to the antenna.
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A key issue in the terminal design is the location of the HPA.

Guided transmission of signals in the EHF band is very difficult. Figure 4-2

shows the loss of various types of transmission lines computed from [ITT,

1979]. As can be seen in Figure 4-2, flexible coax, the most economical

cable, is excessively lossy. Expensive rigid coax and copper waveguides are

also very lossy, ranging from I0 to 30 dB/100 feet. The best that can be done

is silvered waveguide which results in minimum losses of 6 dB/100 feet,

although at considerable expense. A run of 100 feet between the terminal and

antenna is quite possible.

This problem can be avoided by locating the HPA and upconverter at

or near the antenna. This allows the transmission line from the terminal to

the antenna to operate at a lower intermediate frequency (IF), where less

expensive and less lossy cables can be used.

If the HPA/upconverter is located at the antenna, it is necessary

to provide power to the antenna. Either a TWT or a solid state amplifier

could be used. TWT type amplifiers require high voltage supplies and are

generally quite bulky. Solid state amplifiers are smaller and require lower

voltage. Although solid state amplifiers are less efficient than TWTAs, this

is not an issue in the terminal design, especially considering the fairly low

power levels involved.

Using a TWTA at the antenna would also require locating the high

voltage supply at the antenna, uL .u_u be necessary _ ^

voltage to the antenna via a cable. Neither option is particularly

attractive.

A solid state HPA would only require a fairly simple voltage

regulator at the antenna, and the low voltages required could be transmitted

via a conventional cable. Thus, the use of a solid state HPA appears

preferable.

The IF frequency to be used is a compromise between the complexity

of the uDconverter, and the difficulty in relaying the signal between the

terminal and antenna. As a lower IF is used, the transmission line problem is

simplified at the cost of increased upconverter complexity; as a higher IF is

used, more transmission line loss occurs while the upconverter is simpler.

A final issue in the design of the HPA is the output power. The

power output of the HPA is the primary factor in determining the uplink

margin, as the antenna size is constrained. Thus, the HPA output power should

be maximized.

4.2.4 LNA/Downconverter

The low noise amplifier (LNA) amplifies the weak downlink signal

collected by the antenna, and the downconverter translates it to an IF. As

for the transmitter, a similar problem exists with getting the signal from the

antenna to the terminal due to the inherent loss of cables at 20 GHz. In

fact, the signal level from the antenna is so low that amplification must be

done at the antenna before any losses are encountered, otherwise the desired

signal will be buried in the thermal noise of the subsequent equipment. This

problem can be solved by locating the LNA and downconverter at the antenna,

and transmitting the signal to the terminal at IF.
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For the receiver, an IF in the 950-1400 MHz range would seem to

make sense, as this is the IF frequency used for the TVRO systems. Thus, a

fairly good technology base should exist for receivers in this frequency

range, allowing reasonably economical equipment to be developed.

Sky background sets a lower limit on the noise temperature of the

system. Although usually about 20-50°K, the sky background can increase to as

high as 275°K during rain [Frediani, 1979]. Using LNA's with noise

temperatures lower than this is obviously not sensible. Practical LNAs have

noise figures of 3.5 dB or more (360°K), and thus will set the noise floor.

Thus, the noise temperature of the LNA is the primary contributor to the

overall receiver noise temperature, T. Added sky noise during rain will

contribute a small additional degradation of no more than 2.0 dB.

4.2.5 Transmission Line

The transmission line to the antenna must carry three different

signals; the receive IF from the antenna/LNA/downconverter, the transmit IF to

the upconverter/HPA/antenna, and the DC power going to the antenna

electronics.

It would be possible to combine all three of these signals in a

single cable, provided that the receive and tranmit intermediate frequencies

are sufficiently different. The DC, transmit IF, and receive IF can then be

isolated by simple passive filters. By combining a11 three signals in a

single coaxial cable, the cost of the transmission line becomes negligible, on

the order of $5 to $10. _e additional hardware required to separate the

signals is also insignificant.

4.2.6 Transmitter

The transmitter will provide additional upconversion from the

modulator output to the IF used to relay the transmit signal to the antenna.

In many cases, it is desirable to generate the modulation directly at IF, thus

eliminating this component.

4.2.7 Receiver

Additional amplification and downconversion from the IF will be

required pri_r t_ _emnd11]ating the signal. The receiver will perform

downconversion to the baseband or IF required by the demodulator, automatic

gain control, and possibly other functions that may be required by the network

design (i.e., pilot tone tracking, etc.).

4.2.8 Modem

The modem contains both the modulation and demodulation functions.

Since the burst rates will probably be fairly low (200 kb/s), modem technology

in this range is relatively mature. A number of implementation approaches

appear feasible.

The block diagram assumes a transmit modulation is generated at

baseband and then upconverted. For many modulation schemes, however, it is

possible (and often easier) to produce the modulation directly at an IF (or

even in the extreme, to directly modulate the transmit carrier).
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Likewise for the receiver, demodulation can be done at IF rather

than baseband. For example, if DPSK modulation is used, demodulation can be

done using Surface Acoustic Wave (SAW) demodulators which perform demodulation

directly at an IF. A 70 MHz IF is the standard most frequently used.

If a direct sequence spread spectrum access scheme is used, the

modem will also be involved in the spreading/despreading process. This could

be done by using a modulator at the chip rate to spread the carrier. Data

could be modulated onto the carrier separately (either before or after

spreading), or could be added into the PN-sequence. The demodulator could

recover the receive data by using the known PN-sequence to despread the

receive signal, and then performing normal demodulation. The modem would need

to achieve and maintain timing synchronization of the PN-sequence.

4.2.9 Codec

The terminal may include a coder and/or decoder (codec) function to

provide additional link margin. The codec may not always be used, as it does

reduce the bandwidth efficiency. Thus, coding might be switched in or out as

required to combat rain, or to accommodate applications requiring very reli-

able transmission.

The implementation of the codec could be in either hardware or

software, depending upon the complexity of the coding scheme. For long

constraint length convolutional codes, microprocessor decoder implementations

are limited to fairly low data rates, and are probably inadequate. Thus, if

coding is used, hardware for the decoding operation will be required. Soft-

ware encoding, however, is feasible at the low and medium data rates.

4.2.10 Controller

The terminal controller exercises the network protocols; it deter-

mines the time/frequency for transmission, selects receive messages that are

of interest to the user or addressed to that terminal, and maintains synchron-

ization in the network.

The complexity of the network synchronization function depends on

the networking scheme. Pure ALOHA requires no synchronization of individual

net members. More complicated schemes, such as DA/TDMA require very accurate

timing and strict protocols. The access schemes that appear the most feasible

are generally simple, requiring little complexity in the controller. It may

thus be possible to implement the controller functions in software in the

user's PC (see Subsection 4.3.6).

An additional function of the controller is to multiplex/demulti-

plex the low rate channels for such applications as utility meter reading or

home security.

4.2.11 Interfaces

The terminal must interface to the user and low bit rate monitoring

equipment (utility meter reading, home security). The interface to the user

is provided by a PC, which includes the keyboard and screen needed to interact

with the user. The interface to the low rate equipment can be standard (inex-

pensive) RS-232 serial.
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The PC should include software to provide a friendly user inter-

face, and provide any special control to the rest of the terminal needed to

configure it for operation.

4.2.12 Frequency Reference

The terminal must include a frequency reference function which

generates accurate frequency references and stable timing. Limits on afford-

able frequency accuracies are discussed in Subsection 3.1.

An alternate approach to generating a stable frequency reference in

the terminal is to use a pilot tone from the satellite. The receiver would

then need to include a pilot tone tracking function. The receiver frequency

reference would be frequency or phaselocked to the pilot tone, thus achieving

a reasonable receive frequency accuracy, plus or minus whatever Doppler

exists. The frequency accuracy requirement will drive the cost of this

component.

The point at which the most accurate frequency reference is neces-

sary is in the HPA/Upconverter and LNA/Downconverter, since these are the sub-

systems operating at the highest frequency. Since both of these subsystems

are located at the antenna, it seems the frequency reference will also need to

be located at the antenna. This may represent a problem if the pilot tone

approach is used, since the pilot tone tracking would be done in the receiver,

**v_ _ _e antenna.

As generation of accurate 30/20 GHz frequency references is diffi-

cult and expensive, this is a very sensitive area of the terminal design. It

is thus a candidate for possible tradeoff in the system design.

4.3 TERMINAL DESIGN TRADEOFFS

In areas where ample link margin exists, it is possible to make

tradeoffs in the terminal design. Several potential areas for such tradeoffs

are discussed below. It should be noted that these tradeoffs are not

independent.

4.3.1 Antenna Size vs HPA Power

To some degree, antenna size can be traded for HPA power. As more

HPA power is available, less antenna gain is needed, so a smaller antenna can

be used. This would be desirable, as smaller antennas are likely to have a

larger potential market.

4.3.2 Antenna Size vs LNA Temperature

Antenna size can also be traded for LNA effective noise tempera-

ture. As a lower noise LNA is used, less antenna gain is necessary to achieve

the same G/T. Again, this would be desirable. Unfortunately, the cost of

LNAs increases rapidly as better performance is required. Generally, large

antennas are a cheaper way to get more G/T, thus making this a poor trade-off.
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4.3.3 Antenna Size vs Pointing Accuracy

A tradeoff also exists with respect to the antenna size versus the

required pointing accuracy. As larger antennas are used, the beamwidth

becomes narrower, and more accurate pointing is required to reap the full

benefit of the increased gain of the antenna.

For the narrowest beamwidths likely to be used (6.6 ft antennas),

the pointing accuracy required to maintain a loss of less than I dB is assumed

to be on the order of 0.1". Tne mount must therefore allow for pointing with

this fine a resolution.

For the smallest antenna likely to be used (2.3 ft) the equivalent

I dB loss occurs with a pointing accuracy of only 0.4 °.

Thus, it can be seen that the required antenna pointing accuracy is

not particularly sensitive to the antenna size for the limited range we are

considering.

4.3.4 Antenna Size vs Consumer Preference

A final consideration in the antenna size is the preference of the

end users. Generally smaller, less obtrusive antennas are desired by consumer

users. Smaller antennas have the advantages that they are easier to install,

more aesthetically pleasing, and minimize regulatory/zoning problems.

Larger (6 to 12 feet diameter) antennas are necessary for TVRO

terminals, and do not appear to have had a major adverse impact of the accep-

tance of TVRO, as over 1.5 million TVRO terminals have been sold to date.

However, the large size of these antennas has resulted in public concern over

their appearance resultinq in pressure on local communities to pass antenna

ordinances restricting or disallowing the satellite dishes. Many communities

have already done so. In addition, new "planned" communities are often being

designed with cable TV in place and deed restrictions disallowing the erection

of antennas. Although the legality of many of these types of ordinances is

still being determined, this is an area that is likely to remain unsettled for

a number of years. In any event, the general climate is likely to remain

hostile towards large satellite dishes. For this reason, it is felt the size

of the antenna must be minimized.

One p_4hlm approach tn minimize the obtrusiveness of the antenna

is to get away from the parabolic dish structure, and instead build a conform-

al antenna (i.e., a phased array). Such an antenna could be placed on the

rooftop, and would be virtually invisible. As noted previously, the tech-

nology is still relatively immature and such an approach would probably be far

too costly. Technology development to be done for military EHF airborne

antennas may, however, bring some of this technology to maturity.

4.3.5 Use of PC for Baseband Hardware

A final tradeoff is to what extent the PC is used to implement the

functions of the terminal. When the user already has a PC, considerable

savings can be achieved by placing as many of the terminal functions as pos-

sible into the PC. However, the more extensively the PC is used, the less

flexible the terminal becomes. Doing many functions in the PC may require

specialized software and/or hardware, which may not be transportable to other

brands of PCs.
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The use of the PC for the user interface and buffer functions has

already been assumed. The PC could also implement some of the control and

modem functions. Many of the control functions are executed at a fairly low

rate and could easily be accommodated by the user PC. For example, in the

Pure ALOHA access scheme, the PC would simply transmit packets as soon as they

are available to transmit. The packets would be held in a buffer until the

acknowledgment is received, after which they would be flushed. If no acknowl-

edgement is received within a fixed time delay, the unacknowledged packets

would be retransmitted. The overall delay in this process is not critical,

thus the PC is allowed many milliseconds in which to process the acknowledg-

ments (a not unreasonable amount of time for modern microcomputers). Thus,

depending upon the access schemes utilized, much of the terminal control could

possibly be done in the PC, thus reducing the cost of the terminal.
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SECTION5
SATELLITE DESIGN

In this section, we will examine a number of potential satellite

configurations for this 30/20 GHz FSS. _nese will include those architectures

studied for possible implementation on the Advanced Communications Technology

Satellite (ACTS) as well as other variations which are attractive for this

program. Block diagrams of several of these architectures will be pre-

sented. We will also address several of the major components which will drive

the satellite design.

5.1 MULTIPLE BEAM SATELLITE ARCHITECTURES

The use of multiple beams provides many performance gains as noted

in Section 3.6. These included improved bandwidth efficiency through frequen-

cy reuse, more gain on the uplink, less noise insertion on the downlink, and

either lower downlink burst rates (TDMA systems) or less TWTA backoff (FDMA

systems). The penalty one pays for the use of multiple beams is the increased

complexity in the transponder to perform routing between beams and in the

antenna design to form the multiple beams. In this subsection we will present

three satellite architectures which can provide the beam-to-beam routing.

5.1.1 Satellite-Switched TDMA

Satellite-Switched TDMA (SS-TDMA) is an architecture which has

received much attention in recent years for applications at K-band. The

Japanese have been using this technique on their CS-I and CS-2 satellites to

provide trunk routing between several beams covering the islands making up

that country. It has also been selected as the architecture for ACTS.

Basically, SS-TDMA uses a baseband processor to demodulate the

various uplink TDMA signals and route the traffic to the appropriate downlink

beam based upon the slots used. A simple example of the TDMA routing is shown

in Figure 5-I. In it, the processor takes the first slot from uplink I and

route it to downlink 4. Tne second slot from uplink I is sent to downlink 3,

and so forth. Some slots may not be full due to uneven distribution of

traffic between beams. %_ne processor may be reconfiqured to route the traffic

in any manner desired to best serve the actual traffic generated.

SS-TDMA has several advantages. First, it is the only processing

satellite architecture to have already been tested and placed in use. Second,

it requires less satellite weight and power than other processing approaches

since all signals are wideband TDMA. Few multiplexers, filters, and demodula-

tors are required and the satellite HPAs can operate at saturation. Third,

since no channelization is required for TDMA signals, the terminals do not

require synthesizers and can be preset to one carrier frequency.

This architecture does have one major disadvatage for this applica-

tion. High burst rates are required on the uplinks which pushes up the cost

of the terminals. Rates of several Mb/s would be required to provide suffi-

cient capacity. These terminals would then be roughly equivalent to the

Micro-1 terminals being designed for ACTS. The current estimated cost of
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these terminals is between $50K and $I00K. Obviously, this eliminates SS-TDMA

from serious consideration for the consumer market.

5.1.2 Frequency-Routed TDMA

Another satellite architecture which uses baseband processing is

frequency-routed TDMA (FR-TDMA). Figure 5-2 illustrates the concept for a 32-

beam system. In each uplink beam, one carrier is used for each destination

beam, resulting in 32 carriers per beam. The satellite gathers the 32 x 32

uplink carriers, demodulates each, and then multiplexes the traffic destined

for each downlink. _his data traffic is then remodulated on one or two

downlink carriers per beam at an appropriately higher TDMA burst rate. This

provides the best of both FDMA and TDMA in that the terminals' uplink burst

rates are minimized (like FDMA) but the transponder may operate at saturation

(as in TDMA).

Two carriers may be amplified by the same transponder TWTA without

introducing any intermodulation products within the transponder bandwidth.

This reduces by one-half the required receive burst rate of the terminals but

introduces the need for two receivers or some algorithm which tells a terminal

when to listen to each carrier.

Figure 5-3 shows a block diagram of this FR-TDMA architecture.

Only the traffic destined for one carrier of downlink beam I is shown. For

the 32 beam system, 64 processors are required each containing 16 demodula-

tors, multiplexers, and pairs of shift registers. %_nese registers provide the

buffering which allows the rate-change operation on the data; one is being

written at the uplink burst rate while the other is being read from by the

output multiplexer. This figure illustrates the major disadvantage to FR-

TDMA -- satellite complexity. _he number of components increases almost as

the square of the number of beams (M). Table 5-I lists the various components

and their respective weight and power requirements. Not including the TW_fAs

which will be examined in Section 6, this processing satellite transponder

would weigh 1300 ibs and consume 1600W of DC power. The data is several years

old [MITRE,1982] and therefore may be somewhat outdated. However, it does

represent a decent approximation of the satellite complexity.

5.1.3 Satellite-Routed FDMA

A baseband processor is not required to perform routing between

beams. This can also be done through the use of IF filtering and multiplex-

ing. Satellite-Routed FDMA (SR-FDMA) is such an approach for an all FDMA

system. Figure 5-4 presents a block diagram of this architecture. In this

particular example, the traffic is grouped into six regions (R = 6) to

simplify the design. Each beam from a given region uses separate frequencies

so that they may be combined and placed in one input MUX per region (MUXl -

MUX6). All the traffic to the same destination (region) is then grouped

together and downconverted to an IF. Another set of multiplexers (MUX7, MUX8,

etc.) divides this regional traffic by channel which are then grouped by

downlink beam. A set of mixers is necessary to adjust the various frequencies

so that they are contiguous. _he resulting band, amplified and transmitted on

downlink beam !, contains 6 groups of FDM3_ channels containing the traffic of

the 6 regions destined for beam I of region I.
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The main drawback of this alI-FDMA approach is the power efficiency

of the TWTAs. For a single TWTA to be used to amplify many carriers, the

output power must be backed off several dB so that it operates in the linear

region of its power curve. _nis backoff requirement is typically between 3

and 5 dB. This approach also has some of the same complexity problems as

FR-TDMA. However, through the use of the regional concept, the order of the

component count can be kept to M-R instead of M 2. A list of the components

for the SR-FDMA transponder along with their power and weight requirements is

given in Table 5-2. The numbers here are much less than that of a processing

satellite with a total weight (excluding TWTAs) of 224 ibs and a 384 W power

consumption. It should be noted that the numbers tabulated for both this

architecture and FR-TDMA assume 32 beams; fewer beams would produce less

difference in the power and weight requirements between the two approaches.

5.2 FDMA/TDM USING CAPTURE ALOHA

In any processing satellite with RA uplinks, a technique known as

Capture ALOHA can be used to improve the efficiency of the downlinks. This

section describes this technique and demonstrates its performance advantages.

5.2.1 System Concept

n number of uplink frequency channels per uplink beam

(n) I)

K number of uplink packet slots per satellite frame (K >>

I)

Each user employs Pure ALOHA random access transmitting in any one

of these nK frame slots within an uplink beam. The user does not need to

maintain any absolute timing reference to determine the beginning of a slot or

a frame. The satellite demodulates these uplink packets asynchronously during

each frame and stores successfully demodulated packets for subsequent trans-

mission in the appropriate downlink beam in a TDM format.

With Modified Pure ALOHA (MPA), each user can assist in creating a

stable access scheme (Pure ALOHA is inherently unstable) by doubling K with

each unsuccessful transmission and halving K (but to no less than the original

K value) with each successful transmission. This is transparent to the

operations performed at the satellite, i.e., the satellite utilizes a K-packet

frame only in the read/write buffer case (see Subsection 5.2.2.1).

S throughput, the expected number of successful packets per

downlink packet slot (0 4 S < I)

R d =

Pd =

=

downlink data rate (b/s)

downlink transmitted power (W)

efficiency with which bus power is converted to Pd

(0 < _ < 1)

Po other on-board processing power (e.g., demod, remod,

switching, L.O.'s, etc.) (W)
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The satellite power allocated to the on-board communications

subsystem is

P = Po + Pd/s (w) (5.1)

The downlink power figure-of-merit, p, is defined as the useful

downlink data rate, SRd, per unit of satellite power allocated to the

communications subsystem

SR d RdS a(Rd/Pd)S
V .... (b/s/W)

P Po + Pd/a I + UPo/P d

(5.2)

The ratio Pd/Rd is held constant for equivalent downlink
communications performance. The condition for the downlink figure-of-merit to

increase nearly linearly with throughput is

SPo/P d << I .

If this condition is satisfied, e.g., if s _ 0.3 , and if Po/Pd_ 0.5,then

it may make good sense to increase S. As will be seen this can be

accomplished by increasing n (consuming uplink bandwidth and increasing Po)

and adding on-board storage (again, increasing Po ).

We note that this discussion derives from a single uplink beam and

single downlink beam case, where the baseline comparison on satellite power

efficiency is with a non-processing transponder satellite. In comparison to a

processing FDMA/TDM satellite which does not use Capture ALOHA, the figure-of-

merit would show more of an improvement since Po would increase relatively
little from a non-zero value.

A bandwidth efficiency figure-of-merit, c, is also defined as

follows. Given a burst rate B in symbols per second (sym/s), we define the

ideal bandwidth as B (Hz). This corresponds to the single-sided, first-null

bandwidth for a rectangular pulse of duration I/B (s). The bandwidth figure-

of-merit is taken as the fraction of ideal downlink bandwidth actually

utilized on the average, SB d, normalized by the total bandwidth employed on

the uplink and downlink, W u + Wd, where

W u = uplink bandwidth (Hz)

W d = downlink bandwidth (Hz),

ioe.,

SB d
(0 _ c < I/2) . (5.3)

E =W +W d
U

Note that ideally W u = Wd = B d and S = I for this satellite system which

implies e'-ea'ol = I/2; eidea I would be unity for a terrestrial system employing• •

a single ideal bandwidth allocatlon of B = Bd. Thus, there Is a factor
of two

penalty inherent in e to account for the usual double frequency band alloca-

tion in satellite communication.
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Bu

8Bu =

= uplink burst rate (sym/s or Hz)

uplink frequency channel spacing (Hz) (0 < 8)(8 = I

for n = I; as seen in Subsection 3.5.1.1, 8 can be

less than unity for n > I).

For Pure or Slotted ALOHA with n > I channels, the figure-of-merit

E is simply

S

e =2-6 " (5.4)

For n > I uplinks and one downlink in this Capture ALOHA FDMA/TDM scheme,

ideally W d = Bd and W u = nSB u, so ideally

SBd S S
£ - - - (n > 1) (5.5)

nSBu + Bd nS(Bu/Bd) + I n8 + I

for the normal Capture ALOHA design constraint B d = B u. We note that c

eventually decreases with increasing n when S increases slower than linearly

with n. This starts to occur as c =_^=_ ..... .,. -_^_^ _ _^ _ _

optimal bandwidth efficiency point for Capture ALOHA beyond which the added

uplink bandwidth is counterproductive. However, even if this scheme sacri-

fices bandwidth efficiency for power efficiency, at 30/20 GHz and above, this

strategy may be satisfactory, since ample bandwidth may be available.

A comparison of Capture ALOHA and Pure ALOHA will be made by taking

the ratio of the two figures-of-merit for bandwidth efficiency at the same

value of packet delay:

E(Capture ALOHA) 28 S(Capture ALOHA) I (n > I) (5.6)
E(Pure ALOHA) = n_ + I " S(Pure ALOHA)

Isame D values

5.2.2 Pure ALOHA Performance

[DeRosa, et al., 1979] computed the throughput and delay perform-

ance of the Capture ALOHA concept using Slotted ALOHA which requires user

terminals to know absolute slot timing within a certain accuracy. We have

followed these procedures for the case of Pure ALOHA which eliminated absolute

timing requirements at the terminals. This is done by simply replacing G by

2G whenever G appears in the exponent of an expression in DeRosa's work.

It is noted that the delay formulas utilize the original, nominal

value of K and do not reflect the delay experienced by using an MPA algorithm

at a terminal.
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5.2.2.1 Read/Write Buffer Case

Successfully demodulated packets are accumulated in a write buffer

during a satellite frame while packets accumulated during the preceding frame

are transmitted on the TDM downlinks as they are read from another buffer.

The roles of these two buffers are interchanged at the end of each frame.

2G

-Ps = --ne n
is the probability of exactly one uplink

success (0 4 p • I/2e)

f = [nK]p j )nK-j f
Pj " j- s (1-Ps (0 4 pj • I)

is the probability of j successful packets

per frame assuming independent trails.

The throughput is given by

K

j f

j=O

R --_ nominal roundtrip delay between earth and satellite

(measured in packet lengths)

G total (new and retransmitted) packets per packet slot

(0 < S < _)

q ----- S/G is the probability of successful end-to-end packet

transmission (0 4 q • I).

The average end-to-end delay between terminals is

D = R + 1 + K + (R + 1 + 2K +--_-)-_-

(measured in packet lengths)

(5.7)

5.2.2.2 FIFO Buffer Case

L = FIFO buffer length (in packets)

[_0,_I , "''' _L] steady state vector such thatw

= _ M

where M is a transition matrix, defined below, and

_i = probability of i packets in satellite queue in

steady state (0 4 i • L)
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with the constraint

L

_[ Wi = I
i=O

The transition matrix M is given by:

M [mii] is the queue occupancy transition matrix, i.e., mij
is the probability of going from state i to state j.

mij

" 0, j < i- I

0, j > n +i- I

P0 + Pl' j = i = 0

n

Pk, J = L, i ) L - n + I

k=L-i+1

otherwise
Pj-i+I '

and this time

P9 =-.-4[_.]Ps(Ij -ps )n-j (0 4 pj 4 I)

is the probability of j successful

packet arrivals per packet slot.

Now the throughput and delay formulas are

and

S = I - _0P0

L

D = R + I + [ i_ i + (R + I + L + _21)1-q
q

i=0

(5.8)

DeRosa calculated the performance of capture ALOHA with Slotted

ALOHA uplinks. The throughput performance with a FIFO buffer is given in

Figure 5-5. Figure 5-5a shows the performance with a zero queue length for

various numbers of uplinks. The n = I curve is the standard S versus G curve

for Slotted ALOHA, which peaks at I/e throughput. When even a small buffer is

added (Figure 5-5b), significant throughput improvements can occur. For an
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eight packet buffer and three uplinks, near-unity downlink throughput can be

achieved. Note also that the peak broadens as the buffer length increases,

indicating an increase in stability.

For Pure ALOHA, the resulting curves are similar for twice the

number of uplinks. For example, n = 2 performance is identical to n = I with

Slotted ALOHA. Also, n can increase to 6 before the downlink saturates.

Figure 5-6 plots the delay performance of Capture ALOHA. Without

buffering, an increase in throughput (via a larger n) also incurs an increase

in delay. With buffering, however, the delay can decrease as throughput

increases• However, increasing L too much causes the delay to increase for

little gain in throughput. L should therefore be kept relatively small.

5.2.3 Capture ALOHA Performance Comparison

We can now compare the bandwidth efficiency of Capture ALOHA to

that of Slotted ALOHA. By using Equation (5.6) with 8 = 1.9 (for MSK; see

Subsection 3.5.1) and by keeping the average packet delay equal for both

systems, the bandwidth effciencies can be compared. For Slotted ALOHA with a

throughput of 0.25, the resulting delay from Fiqure 5-6a is approximately 22

packets (time slots). At the same delay for Capture ALOHA using three

channels (n = 3) and an eight packet FIFO buffer (L = 8) the throughput is

0.62. Equation (5.6) yields the ratio

c(Capture ALOHA) 2 • !.9 0.62

0.25c(Slotted ALOHA) 3- 1.9+1
= I .41 •

If we assume that Pure ALOHA has half the throughput for the same delay, then

by using n = 6 and S(Pure ALOHA) = 0.125, Equation (5.6) results in

,(Capture ALOHA) 2 • 1.9 0.62

0.125c(Pure ALOHA) 6- 1.9+I
---- = I .52 •

Therefore, we can conclude that for these typical delays, Capture ALOHA can

improve throughput by forty to fifty percent. Even more improvement is

possible by increasing n until the throughput of Capture ALOHA nears unity.

5.3 FSS CONSIDERATIONS

The architectures presented thus far have presumed that all

terminals were alike or that a connection was desirable between any pair of

end users. These assumptions do not hold up for the FSS applications. As

shown in Section 2, must of the promising applications were user/supplier type

connections where consumers would communicate with central facilities such as

banks or retail centers. Applications which require connections between end

users, such as rural telephone, were determined not to be as promising. Even

electronic mail does not require connectivity between the end users since a

double-hop through a central facility could link these users with a small

delay. Zap-Mail by Federal Express was such a scheme. It is evident that the

type of networks required are hub-spoke type networks.
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Hub-spoke architectures usually have very different requirements

for the traffic flowing in or out of the central hub. This implies that the

user and supplier terminals may be quite different. The user terminals, as we

have shown, must be relatively inexpensive and will have a low duty factor.

Because of this low duty factor, the traffic originating from these user

terminals must somehow be coordinated to permit the sharing of the common

links to the hub. ALOHA schemes or SSMA were determined to be the best

alternatives for these links, which we will refer to as backhaul traffic. The

central hubs, on the other hand, do not have to be inexpensive, and typically

will not be since many connections must be handled simultaneously. These

supplier terminals can therefore have larger antennas providing more gain and

requiring less downlink satellite EIRP. Because of this, multiple spot beams

are not as important for the suppliers. One CONUS beam may be sufficient to

service the many suppliers. Each suDplier could be assigned a group of

frequencies or a collection of time slots. The hubs would be fairly high duty

factor users and could make efficient use of fixed frequency or time slot

assignments. We will call this traffic originating from the central hub the

forward links.

The optimal design for the FSS satellite would be one that made

best use of the different requirement of the two terminal types. It would

provide spot beams for the user terminals and perhaps one beam for the

suppliers. This would greatly simplify the transponder architecture since

routing between beams would not be necessary. Basically the transponder would

consist of two halves: one which funnels the backhaul traffic into the one

supplier beam, and a second which separates the forward link traffic by

destination spot beam.

It was determined in Section 3 that the optimal access for the end

users was either Pure ALOHA or SSMA. It was also determined that some

combination of FDM and TDM would minimize the terminal complexity and cost.

Therefore the backhaul links should be channelized. The number of channels

per beam is no longer dependent on the number of beams (as in FR-TDMA or SR-

FDMA) but can be optimized to the particular requirements. In this case there

should be as many channels as needed to support the given traffic with the

amount of traffic per channel determined by the method of access. For Pure

ALOHA, we have assumed a 200 kb/s burst rate so this would be the size of one

channel. For SSMA, we _howed that a spreading factor nf rnnghly 100 times the

number of simultaneous users is required to limit the degradation factor due

to self-interference to a few dB. At a 9600 b/s data rate, the chip rate

should be roughly I Mc/s per simultaneous user.

A system servicing IM users with 32 beams would have 31250 users

per beam. If the average user transmitted one hundred, 600 b messages per

day, then his throughput would be 60 kb daily. Using Pure ALOHA with

S = 0.125, the expected number of attempts to send one message is G/S =

1.43. The average user would then generate 60 kb x 1.43 = 85.8 kb a day. The

amount of interactive data traffic per beam would then be 31250 x 85.8 kb =

2681 Mb daily. In the Public Switch Telephone Network (PSTN), the four

busiest hours (10 am to 2 pm) each carry approximately 10 percent of the total

daily traffic [SIGNATRON, 1985]. If we make the same assumption here, then
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during the peak traffic hours, an average user will send 10 messages per hour

and the peak volume per beam will be 31250 x 10 x 600 b x 1.43 /3600s =

74.5 kb/s. Each 200 kb/s Pure ALOHA channel should be able to provide 25 kb/s

throughput. A few such channels should therefore be sufficient to provide the

necessary service to all the users of one beam even during peak traffic

hours. The actual number of channels per beam could be variable, based on the

expected traffic volume from each area. Thus the scanning beams of Subsection

3.4.3 for low density areas would not be needed.

For an SSMA system, no collisions would occur so the peak volume

would be 31250 x 10 x 600 b / 3600s = 52 kb/s. This is equivalent to almost

5.5 simultaneous users (at 9600 b/s) per beam and would necessitate a chip

rate of 5.5 times I Mc/s or 5.5 Mc/s. Thus for SSMA, one channel per beam

would be sufficient for the assumed traffic load.

On the forward links, any combination of FDM and TDM access schemes

can be feasibly implemented in a supplier terminal. If a straight TDMA

approach is taken, then a processing satellite would be required to perform

rate changing and distribute the slots to the appropriate downlink beam. A

much simpler approach would provide one or two separate uplink channels for

each downlink beam so that no processing would be needed on the transponder.

Since the suppliers would only respond to user transmissions, having two

carriers per beam would not present a problem for the user terminals; they

,uu_u ........ w ....h channel to listen.

Within each TDM carrier, time slots would be allocated to each

supplier according to their traffic needs. This FDM/TDMA architecture for the

forward links would be quite bandwidth efficient per channel since the duty

factor of the suppliers should be reasonably high. With only one CONUS beam

for the suppliers, no frequency reuse would be possible so that more overall

bandwidth may be required for the forward links than on the backhaul (assuming

equal throughput). The overall bandwidth efficiency is given by

E = F • S/8 (b/s/Hz) (5.9)

where

F

8
S

is the frequency reuse factor

is the channel spacing parameter, and

is the channel throughput.

For the backhaul links, F is assumed to 8 (32 beams ÷ 4 colors), 8 is 1.9 for

MSK, and S = 0.125 for Pure ALOHA. The backhaul efficiency, EB, is then 0.53

b/s/Rz. The forward link would require 100 percent channel throughput to

achieve the same bandwidth efficiency.

Figure 5-7 illustrates the frequency plan of this FDMA/TDMA

architecture. The satellite performs frequency translation of the bands in

order to transition from multiple beams to a single beam and vice-versa. The

number of bands required for the user terminals is just the number of distinct

frequency patterns or colors N. The CONUS beam requires M bands corresponding
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to the M user spot beams. The L channels per band would depend on the volume
of traffic and the method of access as described previously.

Figures 5-8 and 5-9 are block diagrams of the transponder for the
backhaul and forward links respectively. It is a simple architecture in
comparison to either FR-TDMAor SR-FDMA.Table 5-3 lists the major components
and estimates the transponder weight and power (minus the TWTArequire-
ments). The totals are nearly half that of even SR-FDMAsince the order of
the components is approximately M (as opposed to M • R for SR-FDMAand M2 for
FR-TDMA). Only one TWTAis shown for the backhaul links but most likely
several will be required to provide the required power over the bandwidth of
interest.

Other variations of this basic architecture are possible. Instead
of TDMAcarriers for the forward links, FDMAchannels could also be used.
This would reduce the receive burst rate required for the user terminals at
the expense of less efficient use of transponder power because of the inter-
modulation problem. No significant change to the transponder design would
result.

Another option is to dedicate a separate satellite HPAto each FDMA
channel in the forward link. This would allow all amplifiers to be run at
saturation without causing intermodulation products. Because only a small
amount of power would be required for each, solid state amplifiers could be
used. T--nenumberof HPAsand filters would increase from M + I to L ® M"+'_._._
L is the number of FDMAchannels per beam. As long as L remained fairly
small, this could be an advisable tradeoff. Further examination of this topic
will be presented in later sections.

5.4 SPACEBORNEPOWERAMPLIFIERS

Through the use of multiple spot beams, the EIRP requirement of the
satellite is not totally borne by the power amplifiers (PA). _nis is not to
say that high power amplifiers are not needed for this Ka-band FSStranspon-
der. The very fact that such high frequencies are being considered for the
system results in difficulties. As one movesup in frequency, the ability to
produce RF power becomes more difficult. At 20 GHz, much research still
remains to be done before truly high power outputs are possible. This
subsection summarizes the current and projected state-of-the-art in satellite
PAs. Muchof the data reported herein was collected by the USAir Force Space
Division in 1985 [Space Division, 1985] so it is fairly recent information.

5.4.1 Traveling WaveTube Amplifiers

For applications requiring the highest power levels, traveling wave
tube amplifiers (TWTAs)are most viable. There are currently two types of
TWTAs,coupled-cavity and helix tubes. The helix tubes are quite popular in
that they can produce high power over a wide bandwidth. They do have tempera-
ture limitations, however, which must be overcome in order to increase their
power levels.

Coupled-cavity tubes can produce higher power with low distortion

and high efficiency over slightly lower bandwidths. However, they do require

more complex power supplies, higher beam voltage, and currently cost consider-

ably more than the helix tubes. In 1982, the cost per cavity was $100 [MITRE,
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1982]. There are about 150 cavities in a coupled-cavity TWT assembly so the

cost at that time just for materials was $15K. Significant cost reductions

are anticipated in the coming years.

The current availability of 20 GHz TWTAs is exemplified by the

Hughes model 292H 4 W helix tube. This tube was developed for the Japanese CS

program and seventeen were delivered. Five are now in operation and one has

failed; the tubes have a design life of approximately three years. Several

years ago Hughes developed a multimode helix TWTA at 20 GHz for Bell Labora-

tories with variable output power levels. A follow-on to that development was

performed for NASA for a tube designated the 918H. It had four saturated

power levels of 7.5, 12, 25, and 75 W. Hughes is currently providing this

tube to TRW for the ACTS program with power levels of 12 and 45 W. The

efficiency of this tube ranges from 27 to 45%, depending on the output power

level. A 25 W tube is also being developed by Hughes for the MILSTAR pro-

gram. It is rated at 37% efficiency and weighs 3 ibs.

Figure 5-I 0 projects TWTA efficiency through the end of this

century for several frequency bands. There is a tradeoff between efficiency

and reliability. Higher efficiencies can usually be obtained if one accepts a

reduction in tube reliability. Improved processing and screening techniques

are required to compensate for this problem.

5.4.2 Solid State Power Amplifiers

There is a great deal of interest in replacing TWTAs with solid-

state PAs because of the siqnificant improvements in life and reliability of

solid-state devices over vacuum tubes. Although solid-state amplifiers do not

offer the same Dower levels or efficiencies of tubes, their use with circuit

and array power combining technology offers practical alternatives to TWTAs.

Gallium arsenide field effects transistors (GaAs FET) are currently

the most promising technology for solid-state amplifiers. When compared to

IMPATT diodes, FETs offer the advantages of more stability, linear amplifica-

tion, good input-output isolation, and broad bandwidths. Unfortunately, they

provide less power and lower efficiencies then IMPATTs above 30 GHz. Texas

Instruments has been working on this technology with the goal of 0.25 to 0.3 W

per module at 30 GHz. These could be used to produce 8 W by power combining

several of these modules. Approximately 1.5 GHz of bandwidth and 8% efficien-

cy has been demonstrated.

IMPATT (Impact Avalanche Transit Time) devices are generally

capable of higher power outputs than FETs. Several companies are currently

working to produce IMPATT diode amplifiers with 20 W of output power and 20%

efficiencies. So far bandwidths of these devices have been rather low

(100-500 MHz). More testing is needed to determine what lifetimes can be

expected with these devices.

In order to obtain reasonable powers for solid-state amplifiers,

power combining techniques must be employed. Figure 5-11 illustrates the

paths which may be taken starting with either FETs or IMPATT diodes and ending

with 10 to 40 W amplifiers. Two levels of power combining are performed; the
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first level is chip combining while the second is some form of circuit

combining. The advantages and disadvantages of several power combining

techniques are listed in Table 5-4. Research in all of these areas are needed

before high power solid-state amplifiers will be used for spaceborne

applications.

5.5 MULTIPLE BEAM ANTENNAS

So far we have simply stated that multiple beams will be necessary

to provide the required gain for the weak uplink signals from the user

terminals. In this subsection we will attempt to quantify the multi-beam

requirements.

5.5.1 Number of Beams

Figure 5-12 modified from [NASA, 1986] shows the number of spot

beams required to cover the CONUS as a function of the antenna diameter or

3 dB beamwidth. It is assumed here that full CONUS coverage is desired and

that scanning beams will not be an option due to the higher burst rates and

synchronization required. Table 5-5 lists several beam configurations

covering the range of possibilities. At the top is a seven beam system with

2.2 ° beamwidths. It provides only 36 dB of gain (assuming 40% antenna

efficiency) which is probably inadequate given the terminal characteristics

(see Tradeoffs, Section 6). At the bottom is the 0.32 ° beams similar to those

of ACTS. Roughly 52 dB of gain can be obtained with these beams. However, to

obtain full CONUS coverage, roughly 140 spot beams would be needed. The feed

structure for this many beams is deemed to be much too complex for at least an

initial FSS system. We feel that the range of interest is from 16 to 47

beams, corresponding to beamwidths of 1.2 to 0.6 ° and gains of 41 to 47 dB.

The achievable frequency reuse assuming four unique frequency patterns

(colors) is also listed to illustrate the amount of bandwidth reduction

possible with multiple beams.

With satellite architectures such as FR-TDMA or SR-FDMA, the

complexity of the satellite may be dominated by the component count since they

respectively require M 2 and RoM quantities of some components (R is the number

of regions). For these architectures, M should be limited to the lower

portion of the above range, i.e., roughly 16. The hybrid FDMA/TDMA architec-

ture of Subsection 5.3 requires far fewer components and hence more beams

could be supported with the same complexity. For this system, the multi-horn

feed will be the limiting factor.

In most existing commercial satellites, one reflector is shared

between the uplink and downlink beams. As the number of beams grows, the feed

structure becomes increasingly complex, making it difficult to share the

reflector. In ACTS, two reflectors are employed, each with identical gains

and beamwidths. It is envisioned that the satellite for this FSS would

similarly have two reflectors for the spot beams.

5.6 30 GHz LOW NOISE RECEIVER

Current satellite receivers utilize an image rejection enhanced

mixer followed by an IF amplifier. The mixers are extremely difficult to

optimize at high frequencies and are therefore labor intensive and constitute
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Table 5-4
Power Combining Techniques for GaAsFETAmplifiers

Combining

Technique

Attractive

Features Disadvantages

Chip level

Cascade

Lange coupler

Cascaded

Wilkinson in-

phase power splitter

Matched tee

paralleling

balanced stages

Nagal N-way

planar splitter

Radial splitting

Compact, simple

matching

Planar, good VSWR

Planar, simple

fabrication

Planar, good VSWR,

low loss

Planar, simple

fabrication low

loss

Low loss, inherent

phase symmetry,

good isolation

Limited by thermal constraints,

close control over device and

package element parameters

High loss, high resolution

fabrication required

Hiqh loss, poor VSWR

Reduced isolation

Requires careful phase

matching

Not planar, complex

assembly

Table 5-5

Beamsize Tradeoff

3-dB Number of Frequency Gain (dB)

Beamwidth (o) Beams Reuse (I ) (2)

2.2 7 I .75 36.0

I .2 16 4.0 41 .3

I .0 22 5.5 42.8

0.7 38 9.5 45.9

0.6 47 11 .75 47.3

0.5 70 17.5 48.9

0.32 140 35.0 52.8

(I) Assumes four colors (F=4)

(2) Assumes 40% antenna efficiency
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Figure 5-12 Number of Spot Beams Required to Cover Conus
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a significant recurring cost in satellite construction. ITT and LNR, Inc.

[Microwave, 1984] have each developed 30 GHz LNRs using this approach, with

the design goal of a 5 dB noise figure across a 2.5 GHz bandwidth. Only a

6.5 dB noise figure has been achieved.

NASA is also sponsoring the development of LNRs which use FETs for

RF preamplification. 1_%is approach offers lower cost and higher performance

than the front end mixers. Hughes has developed a 4 dB NF receive over a

2.5 GHz bandwidth. It is this technology that is being flown on ACTS.
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SECTION6
SATELLITE/TERMINAL TRADE-OFFS

In the preceding sections, we have examined various alternatives

for both the ground and space segments and have only eliminated those options

which were not feasible. As yet we have not made any concrete recommendations

since this can be done only when looking at the whole picture. _nis section:

I) Proposes a strawman system consisting of the most promising

and least technology constrained system components,

2) Derives link budgets for this strawman system,

3) If this strawman design is inadequate, determines the most

cost effective methods of closing the link margins,

4) Proposes a revised system design which meets the performance

requirements in at least the dry climates,

5) Performs tradeoffs of alternatives which provide rain

compensation in the wetter climates, and finally

6) Estimates the ground and space segment costs.

6.1 STRAWMAN SYSTEM DESIGN

We showed in Section 5 that a hybrid satellite architecture with

FDMA links from the user terminals and TDMA links from the supplier terminals

would best serve the hub-spoke nature of the postulated applications. There-

fore the baseline system design contains the FDMA/TDMA hybrid architecture

described in Subsection 5.3. The satellite is a bent pipe transponder with no

on-board processinq (non-regenerative). A single CONUS beam serves the sup-

pliers and M = 32 spot beams cover the users. Pure ALOHA is assumed for the

backhaul traffic (users) while straight TDMA is employed on the forward links

(suppliers).

We make the assumption that the forward link contains twice the

traffic volume as the backhaul since most applications contain a request from

the user for some data response from the supplier. Even so, the higher

throughput of TDMA results in less bandwidth being required for the forward

links than for the Pure ALOHA backhaul. From Subsection 5.3, we concluded

that only a few 200 kb/s FDMA channels are required per beam for the backhaul

traffic. If four channels are allocated and a 12.5% throughput is assumed for

Pure ALOHA, then the maximum practical throughput per beam is 4 x 200 kb/s x

0.125 = 100 kb/s. With a 600 b average packet length for this traffic, the

maximum arrival rate _ will be 100 kb/s ÷ 600 b = 166.6 packets per second.

If the length of the TDMA slot is set at 2000 b, then the maximum forward

traffic volume would be 166.6 x 2000 b = 323 kb/s. The average delay of a

M/D/I queue (exponentially distributed arrival times, deterministic service

times, and a single server) can be shown to be

= h p (6.1)
2 I - p
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where

p the ratio of arrival rate I to service rate _, or the percent

of used slots.

h F I/_, the constant service or holding time.

If we assume that there are 100 suppliers which serve each beam and that only

two channels are permitted per beam so that the TWTAs can run at saturation,

then the service time h is just

h 100 2000 b=--x (6.2)
2 R

where R is the TDMA burst rate. The value of p can likewise be calculated

from the ratio I/_. With _ already set at 166.6 user messages (requests) per

second and _ defined as 2 x R/2000 b, then

166.6 x 2000 b (6.3)
P = 2 x R "

Table 6-1 presents the average delay from Equation (6.1) as a function of R.

Table 6-I

Delay Performance of Forward TDMA Link

R(kb/s) h p d (s)

100 1.0 1.66 1.25

200 0.5 0.83 0.21

300 0.33 0.55 0.21

400 0.25 0.42 0.09

An average processing delay of under a quarter second would seem reasonable

given the half second in propagation delay associated with the two links

making up a connection. A 300 kb/s burst rate and 55% throughput on the for-

ward links is thus obtained.

The waveform is assumed to be MSK with non-coherent detection.

This requires approximately 10.5 dB Eb/N 0 for a 10 -5 BER and a channel spacing

8 of 1.9 (see Subsection 3.5.2.2). Four colors or frequency patterns (N=4)

are used, providing a frequency reuse factor F of eight. ="_==etotal req,1_e4

bandwidth allocation for this strawman system is computed in Table 6-2 below.

Table 6-2

FSS Bandwidth Requirement

Forward

Uplink

Downlink

N x 4 x 200 kb/s x 1.9 = 6.08 MHz

M x 4 x 200 kb/s x 1.9 = 48.64 MHz

Backhaul

Uplink

Down link

M x 2 x 300 kb/s x 1.9 = 36.48 MHz

N x 2 x 300 kb/s x 1.9 = 4.56 MHz

TOTAL BANDWIDTH 95.76 MHz
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A simple user terminal design is proposed based on the results of
Section 4. A low terminal EIRP (I WHPAwith a 2.5 ft dish) and G/T (15 dB/°K
based on the above antenna size and a 500°K LNA) is assumed. From Subsection
3.5.3 we include 6 dB of uplink rain margin and 3 dB of downlink rain margin
This will provide at least 0.995 availability to the dryer climate regions.
Between 0.75 and 9 dB of additionl EIRP will be required from terminals in
wetter regions (see Table 3-5), and in the southeast (Region E) soft decision
convolutional coding will be needed to produce the same0.995 availability.

The supplier terminal can be more complex. Wehave assumeda 10 ft
dish, an 8 W HPA, and a 400°K LNA. This provides over 66 dBWi of effective
radiated power and a G/T of almost 26 dB/°K.

The satellite is assumedto contain 64 TWTAs. The spot beamsuse
20 W TWTs. This provides up to 10 dBWof power for each of the two TDMAchan-
nels run at saturation. A I dB output backoff may be needed to prevent the
suppression of small (rain attenuated) signals. When combined with the
0.8 ° spot beams which yield 45 dBi of on-axis gain and a 3 dB loss of the

multibeam antenna and waveguides, this produces almost 51 dBWi of effective

radiated power. The CONUS beam has only 26 dBi of antenna gain. Although

only one HPA is needed for this single beam, multiple TWTs are again used here

to provide the necessary power. A 75 W tube with a 6 dB output backoff is

assumed for each of the 32 uplink beams' traffic. This is the most powerful

TWT h,li It to-date at 20 GHz. When divided between the four FDMA channels per

beam, these tubes will provide 6.7 dBW of output power per channel. The low

noise receiver (LNR) on-board the sDacecraft is assumed to have a 4 dB noise

figure (438°K).

A comDlete list of assumptions for the strawman system design is

presented in Table 6-3.

6.2 LINK BUDGETS

Given the baseline system described above, link budgets can be

derived for both the forward and backhaul links. These link budgets are

presented in Tables 6-4 and 6-5 respectively. They are for terminals opera-

ting in the dryest climate (Region A) and hence as much as 13 dB more uplink

margin will be require for terminals in wetter climates. Those additional

margins are given in Table 3-5 by region.

Worst case assumptions have been made in most cases. The edge of

beam spacecraft antenna gain is used for both the uplink and downlink. A

10 dB fade is assumed for the signal of interest relative to the other

signals. This reduces the fraction of power allocated by the spacecraft TWTA

to the weak signal to as little as 1/31 of the total (four carrier per TWTA

backhaul link) and 1/11 of the total (two carrier per beam forward link).

As one can see, this baseline system does not meet the data rate

requirements. In particular, the backhaul downlink falls over 6 dB short of

its requirement. This is principally due to the low gain of the CONUS down-

link beam. Obviously additional gains are necessary in either the spacecraft,

terminals, or both.
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Table 6-3
StrawmanSystem Design

System Architecture

Frequency Source

One pilot tone per beam

FLL in each terminal

Backhaul Links

FDMA - 200 kb/s

Pure ALOHA access

ACK/NAK returned by supplier

Forward Links

TDMA - 300 kb/s

Fixed TDMA slot assignments

Twice as much traffic as on the backhaul

Rain Compensation

6 dB uplink margin

3 dB downlink marqin

1 to 9 dB additional EIRP for wet climates

Soft decision decoding of backhaul link from

Reqion E

Waveform

Minimum Shift Keying (MSK)

Io9 Hz/b/s channel spacing noncoherent detection

lO.5 dB o for 10-5

Satellite Desiqn

Non-regenerative

FDMA/TDMA hybrid

32 spot beams to user terminals

- 4.3 feet (1.3 m) downlink reflector at 20 GHz

- 2.9 feet (0.87 m) uplink reflector at 30 GHz

4 colors - 8 times frequency reuse

1CONUS beam to supplier terminals

20 W TWTAs for the downlink spot beams

- I dB output backoff

75 W TWTAs for each uplink spot beam's traffic

- 6 dB output backoff

4 dB noise figure 30 GHz LNR
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Table 6-3
StrawmanSystemDesign (Concluded)

Terminal Design

User Terminal

2.5 ft dish

I W HPA

500°K LNA

Rate I/2 convolutional encoder for Region E

terminals

200 kb/s burst rate

Pure ALOHA access

Supplier Terminal

10 ft dish

8 W HPA

400°K LNA

Soft decision decoder

300 kb/s TDMA burst rate
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Table 6-4
StrawmanDesign Forward Link Budget

Uplink

EIRP

Miscellaneous loss

Rain margin

Path loss (30 GHz)

Power at S/C ant.

S/C ant. gain (CONUS beam)

Edge of beam loss

k

T (4dB NF)

N o

C/N 0 uplink

66.0 dBWi

- 5.0 dB

- 6.0 dB

-213.0 dB

-158.0 dBW

26.0 dBi

- 3.0 dB

-135.0 dBW

202.2

67.2 dB-Hz

Downlink

S/C ant. gain

Feed losses

TWT power per channel

EIRP

Path loss (20 GHz)

Rain margin

Miscellaneous loss

Edge of beam loss

Power at Terminal

k

G/T (terminal)

C/N 0 downlink

Overall C/N 0
Req data rate (300 kb/s)

Achieved B/N0 0-5
Req Eb/N 0 for 1 BER

Margin

45.0 dBi

- 3.0 dB

1.6 dBW

43.6 dBWi

-210.0 dB

- 3.0 dB

- 5.0 dB

- 3.0 dB

-177.4 dBW

228.6

14'5 dB/OK

65.7 dB-Hz

63.4 dB-Hz

- 54.8 dB

8.5 dB

- 10.5 dB

- 1.9 dB
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Table 6-5
StrawmanDesign Backhaul Link Budget

Uplink

EIRP

Miscellaneous loss

Rain margin

Path loss (30 GHz)

Power at S/C ant.

S/C ant. gain (0.8 ° beamwidth)

Edge of beam loss

k

T (4dB NF)

N O

C/N 0 uplink

45.3 dBWi

- 5.0 dB

- 6.0 dB

-213.0 dB

-178.7 dBW

45.0 dBi

- 3.0 dB

-136.7 dBW

202.2

65.5 dB-Hz

Downlink

S/C ant. gain

Feed losses

TWT power per channel

EIRP

Path loss (20 GHz)

Rain margin

Miscellaneous loss

Edge of beam loss

Power at Terminal

k

G/T (terminal)

C/No downlink

Overall C/N 0
Req data rate (200 kb/s)

Achieved Eb/N 0

Req Eb/N 0 for 10 -5 BER

Margin

26.0 dBi

- 1.0 dB

- 2.2 dBW

22.8 dBWi

-210.0 dB

- 3.0 dB

- 5.0 dB

- 3.0 dB

-198.2 dBW

228.6

27.4 dB/°K

57.8 dB-Hz

57. I dB-Hz

- 53.0 dB

4.1 dB

i0,5 dB

- 6.4 dB
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6.3 SYSTEM COSTING

Before trade-offs between satellite and terminal performance can be

made, some understanding of the cost relationships of various components is

required. This subsection derives some of the simple cost relationships that

will be required for the trade-offs.

6.3.1 Ground/Space Segment Relationships

Typically, one attempts to minimize system cost by spending roughly

equal amounts on the ground and space segments. In this direct-to-subscriber

FSS system, the goal is to bring the services to millions of consumers. This

enables one to spend millions on the satellite(s) for each dollar of terminal

cost. There reaches a point with this number of terminals, however, where one

reaches an absolute minimum terminal cost because of system and technology

constraints. In this case, one can attempt to minimize the terminal costs and

then minimize the space segment costs which meets the performance

requirements.

6.3.2 Space Segment Costs

6.3.2.1 Satellite Weight Optimization

Satellite cost is proportional primarily to satellite weight which

in turn is a function of satellite EIRP and other factors. The approach taken

_ _4_ _ examination of the _ 4_ _ _e_4._ _= _4_,_ _,=_g_

satellite as a function of EIRP. In order to accomplish this, a model is

suggested. It should be recognized that the results which derive from the

model will change if the model is changed.

For a specific system performance level, the only variables which

significantly affect satellite weight are the antennas and the RF power ampli-

fiers. The weight of the satellite antennas, including the feeds and trans-

mitters (and the weight due to thermal power control and primary electrical

power), can be modeled.

According to a Bell Telephone Laboratory report [Bell, 1968]

performed for NASA, a rigid reflector of the type required for use at

20/30 GHz, has a weight proportional to antenna diameter, i.e., Wt = 10D,

where D is in feet. For the purposes of this analysis, the antennas being

modeled include the reflector, feeds, and struc_,_re= For an M-h_am _,_nn_;

the weight model is:

Item Weight (ibs)

reflector I 0D

feed M/I 0

structure 15% (10D + M/10)
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Therefore,

where

and

Want m 12D + M/9 (ibs),

D = diameter in feet,

M = number of feeds.

(6.4)

For two reflectors, one for the 30 GHz uplink and another for the 20 GHz down-

link, this becomes

Wan t " 12_D30 + D20 ) + M/9

" 20 D20 + M/9,

for equal size uplink and downlink beams.

Available data [Hughes, 1984] indicate that the TWTA weight (for

power levels greater than I W) is

WTWTA _ I + P/12 (Ibs) (6.5)

where P = RF power of TWT in watts. This is illustrated in Figure 6-i.

old curve [Bell, 1968] was also plotted for comparison.

The prime power weight burden is also estimated as

An

W _ 0.4 P/n (ibs) (6.6)
PP

where D = DC to RF efficiency. This overall efficiency is actually the

product of two efficiency factors

n = nps nTW T (6.7)

where

n _q fh_ Dower suoolv efficiency, rouqhly 0.85, and
PS - _ ....

nTW T is estimated at 0.4 when at saturation and 0.3
when backed off.

Thus n falls in the range of 0.25 to 0.35.

By quantifying the relationship between beam size and the number of

beams to cover CONUS (see Figure 5-12), we will be able to determine the opti-

mum satellite design for a fixed EIRP requirement. This relationship can be

approximated as

2

M = 1.4 D20 + 3.5 (6.8)
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where D20 is the downlink antenna size in feet.

Since the antenna gain can be shown to be

G = 10.2 na_D FGHz )2 (6.9)

2

= 1630 D20

(assuming the antenna efficiency n a is 0.4) the required RF power per beam is

just

2 (6.10)
P = EIRP/1630 D20 •

The overall antenna and transmitter weight can therefore be approximated as

wt - 20 D20 + M[I ÷ P/12 + 04 MP/.
(6.11)

EIRP

2 3.5)[1 * (1/12 + 0.4/_)]." 20 D20 + (1.4 D20 + 2

1630 D20

This is plotted in Figure 6-2 as a function of downlink antenna size for

several EIRP values. It shows that the prime power weight burden dominates W t

for small antenna sizes _!t quickly reaches an optimum (minimum weight)

antenna size. Beyond this optimum value, the curves rise gradually indicating

that smaller (but more) beams can be added without s_gnificantly impacting

satellite weight.

The satellite EIRP requirement must at least be greater than

45 dBWi (from Table 6-4). _nis would indicate an optimum downlink antenna

size of 2 to 3 feet, corresponding to between 9 and 16 beams. However, an

increase to 32 beams would require over a 4 ft antenna which increases the

weight only slightly.

6.3.2.2 Satellite Cost Estimation

Satellite cost estimation can be based upon the very detailed SAMSO

Unmanned Spacecraft Cost _timation Model or on a simpler rule-of-thumb basis

which relates _he cnst of the spacecraft to its total weiqht. The latter ap-

proach is selected as most appropriate for this study. It has been shown

[MILSATCOM, 1976] that the recurring cost, CR, and non-recurring (development)

cost, CNR E are given approximately by

C R ($M) - 0.031 (on-orbit weight, Ibs) 0"93 + launch (6.12)

and

CNR E ($M) - 0.016 (on-orbit weight, Ibs) 1"15. (6.13)

These relationships are admittedly somewhat outdated, but should be

sufficient for our purposes (terminal cost is far more important).

The launch cost is ignored in this report. It can be shown that

the on-orbit weight of a communications satellite is directly related to the

weight and power requirements of the communications package.
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An approximation for the beginning of mission (BOM) weight (ibs)

and power (watts) for a communications satellite is:

Wsa t - 800 + 1.53W c + 0.8P c (6.14)

Psat " 240 + 1.26 Pc (6.15)

where, W c is the weight of the communications package and Pc is the DC power
required by the communications package. The validity of Equation (6.14) and

(6.15) were checked by using figures from ACTS. The multibeam communication

package on ACTS weights 730 ibs and consumes 822 ibs of power. With these

inputs, Equations (6.14) and (6.15) calculate the BOM satellite weight and

power to be 2575 ibs and 1275 W. This is quite close to the actual values

(not including laser package) of 2400 Ibs and 1600 W.

Once the communications payload requirements have been estimated

for the FSS transponder, then the total weight and power requirements (and

hence cost) can be derived.

6.4 TRADE-OFFS

In this subsection, we examine various options which can provide

the additional margins necessary, or may be less costly to implement. For

example, there are many combinations of satellite and terminal complexities

which provide the same performance. In qenerai, one should increase the

complexity of the satellite before the terminal, although at some point this

ceases to be a beneficial trade-off.

6.4.1 Baseband Processing

Baseband processing offers several significant advantages to satel-

lite performance. These are: I) no noise amplified on the downlink; 2) weak

signal compensation; and, 3) both bandwidth and delay can be reduced through

the use of Capture ALOHA (see Subsection 5.2). For equal uplink and downlink

signals, the first property yields a 3 dB improvement in overall C/N 0 or

allows almost a 3 dB reduction in both uplink and downlink carrier powers. If

the uplink is 6 db stronger than the downlink to minimize the required down-

link power, then regeneration will improve the overall C/N 0 by only I dB but

•sill al_o permit a 6 dB red_c_inn in the uplink siqnal.

The second property of weak signal compensation is quite signifi-

cant for a Ka-band satellite system since the variation between signal levels

can be quite large. In terms of intermodulation, a 6 dB output backoff will

not be required if all signals are of equal amplitude; a 3 dB backoff should

be sufficient. Also, since each signal is regenerated, the total TWTA power

can be equally divided among the carriers. In terms of the link budgets

presented above, the forward downlink TWT power per channel would rise from

1.6 dBW to 10 dBW (TWT at saturation) and the corresponding figure for the

backhaul downlink would leap from -2.2 dBW to 9.7 dBW.

If baseband processing were to be implemented, Capture ALOHA could

provide additional advantages on the Pure ALOHA backhaul link without a signi-

ficant increase in cost or complexity. As shown in Subsection 5.2, roughly a

30 percent reduction in required bandwidth for the backhaul link could be

achieved by using Capture ALOHA while also reducing delay.
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The C/N0's of both forward and backhaul uplinks of the baseline
system would be sufficient to achieve a 10 -5 BER at the satellite (10.5 dB

Eb/N 0 plus 2 dB implementation loss). The regenerated signals should there-
fore be essentially error-free and the baseband processing would provide an

8.5 dB improvement in the C/N 0 at the receiver on the forward link and an

11.9 dB improvement to the backhaul link. Thus, a regenerative satellite

would provide more than enough additional gain to achieve positive link

margins. Other processing such as decoding, rate changing, and encoding would

not be necessary.

Unfortunately, processing satellites are more complex and less

flexible than conventional design. Additional modulators, demodulators,

filters, and other components are required for each channel processed. For

our baseline design, this would correspond to 128 of each for the backhaul (4

channels times 32 beams) and 64 of each for the forward link. Even if proces-

sing were limited to the backhaul traffic where it is needed more, this

results in a considerable increase in weight and power requirement. Sub-

section 3.4.3.1 quoted figures of 400 kg and 2 kW as being necessary to

process 100 MHz of spectral bandwidth. Our baseline system contains

128 x 200 kb/s x 1.9 = 48.6 MHz of bandwidth on the backhaul and 64 x

300 kb/s x 1.9 = 36.5 MHz on the forward links. Since the downconversion to

baseband is already required in order to regenerate the uplink signals, then

one might as well also implement the baseband processing of FR-TDMA on the

_._1 links. _ ..... _ ........ IA be ....... ary _ _,,_ _ ............... i_

perform the rate change operation so that a single TDM downlink carrier exists

from each beam (multiplex the four FDMA channels). The _As could then run

at saturation. The estimated unit power and weight (from Subsection 5.1.2)

for the components necessary for this baseband processing of the backhaul

links is given in Table 6-6. When multiplied by the number of components

needed for this baseline design, the total weight and power required are

324 ibs and 544 W. We view this as an upper bound for these figures since

considerable progress has been made in power and weight reduction since these

figures were published. A current data point is the ACTS baseband processor

which serves two 110 Mb/s channels. This processor contains two switchable

FEC units, two rate changes, and a switch in addition to the modulators/

demodulators and weighs 119 Ibs and consumes 218 W.

We can conclude, therefore, that on-board signal regeneration is

not impractical from a power and weight perspective. In fact, the TWTA weight

could be reduced by using lower power tubes, i.e., 45 W on the backhaul, and

their power efficiency would be increased by running at saturation.

The other drawback to a processing satellite is its inflexibility.

The demodulators and modulators can operate only at a limited number of input

data rates. This is in contrast to bent pipe transponders which repeat what-

ever they receive. However, for our baseline system which relies on fixed

burst rates (200 or 300 kb/s), this inflexibility is unimportant. The sup-

pliers can specify any data rate they desire up to the 200 kb/s backhaul burst

rate. The only force limiting the possible data rate is the desire for

terminal compatibility with the data source (personal computer). Since all of
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Table 6-6
AddedComponentsto Baseline Design

Neededfor BasebandProcessing
of Backhaul Links

D/CI
D/C2
Filter
Amplifier
Demodulator
Processor
Modulator
ulCl
Amplifier

U/C 2

Totals

No Unit Unit Total

Units Wt (oz) Power (W) Weight (Ibs)

M

4M

4M

4M

4M

M

M

M

M

M

16

2

2

2

6

42

32

2

6

16

0.5

12

2

m

I

32

16

16

16

48

84

64

4

12

32

324

Total

Power (W)

64

384

64

32

544
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the applications considered have data rates which are much less than the

proposed burst rates, then the satellite modulators and demodulators can be

built for one specified burst rate without limiting their applicability. A

processing satellite is therefore a viable method of picking up the necessary

margin on the backhaul links; it may be a bit excessive for the forward links.

6.4.2 Spread Spectrum

By separating the forward and backhaul links as we have done with

our baseline design, SSMA becomes a viable means of closing the margin on the

backhaul. This is because of the difference in noise bandwidths seen by the

demodulator. Once the signal is despread, the receiver looks at a noise

bandwidth equal to the data rate, not the burst or chip rate. The rate change

from 200 kb/s to 9600 b/s corresponds to a 13 dB reduction in required power.

(Up to 5 dB of this would be given back in the degradation factor - see Sub-

section 3.2.3.) The user terminal EIRP requirement would therefore drop to as

little as 32.3 dBWi (for the driest climate regions) and a maximum of

41.3 dBWi in Region E. Tnis would allow very small antennas and fractional

watt HPAs. On the downlink, the same (baseline) C/N 0 would be sufficient to

create a positive (although small) margin for backhaul links.

SSMA is therefore another alternative which would perform

adequately. Since the backhaul link goes from the user terminals to the

_,_I__ no A_spr_aAing operation fa_m_Riei_n _na trmckina of the spread

waveform) is required at the user terminals. The spreading operation (to >5

Mc/s, see Subsection 5.3) which is required is not difficult or expensive to

implement.

There are, however, drawbacks to SSMA which we addressed in Section

3. The first is the large bandwidth requirement, between five and ten times

the spectrum needed for Pure ALOHA. This by itself is not necessarily criti-

cal since bandwidth in the 30/20 GHz region is currently plentiful. A far

more important consideration is the frequency accuracy requirement. This

frequency stability is directly proportional to the data rate which must be

demodulated. The 9600 b/s data rate therefore requires a frequency knowledge,

in both the transmitter and receiver, twenty times more accurate than that

required for the 200 kb/s burst rate. This is made easier by the fact that no

channelization will be needed in the user terminals. Each uplink spot beam

would contain a single spread carrier so that a stable source set at that

beam's prescribed frequency could be employed in the user terminals and no

synthesizer would be required. However, it is the microwave components of the

terminal's frequency acquisition circuitry (voltage tuned DSO and pilot

discriminator) which will drive the cost, and not the IF components (VHF

synthesizer, etc; see Figure 3-I).

Whether it is worth trading the added complexity of a more accurate

frequency reference for a less powerful HPA is difficult to determine at this

time. Much work remains to be done on Ka-band components for earth stations.

Solid-state HPAs at 30 GHz are currently too expensive no matter what power

output is needed. If a 0.1W amplifier is developed which is inexpensive and

one or more watts stays prohibitively expensive, then the spread spectrum

terminal may actually be the first to become affordable. However if the dif-

ference in cost between 0.1 and 1W amplifiers is small, then SSMA will not

offer any advantages to the service providers.
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6.4.3 Spacecraft/Terminal Trade-offs

The baseline system was selected so as to offer the simplest

possible design and thereby minimize the system cost. However, because this

design did not meet the performance requirements, alternatives must be

investigated which are perhaps more complex and costly. We have already

examined two alternatives (baseband processing and spread spectrum) which

would provide significant improvements to the backhaul link performance. In

this subsection, other more subtle alternatives to the satellite and earth

terminal designs will be investigated. The goal here is twofold: first, we

hope to identify ways in which both forward and backhaul link deficiencies can

be overcome; and second, variations to the baseline system which may be more

cost effective may be discovered. In particular, we will be looking for

trade-offs which can shift more of the burden from the terminals to the satel-

lite, e.g., higher spacecraft EIRP for a smaller terminal antenna gain.

6.4.3.1 Satellite TWTA Alternatives

The baseline design already contained 64 TWTAs, half of which were

at the limit of current technology in terms of power output. This leaves

little room for improvement. The forward link, however, specified 20 W tubes

which could be increased. For example, if 45 W tubes were used in their

place, then the required link margin could be met. The penalty for increasing

the downlink power is in both satellite weight and DC power. The satellite DC

power requirement of the baseline design, just for the power amplifiers, is:

plus

32 beams x 75 W/4.0/0.25 = 2400 W

32 beams x 20 W/1.26/0.4 = 1270 W

(backhaul link l-%FfAs)

(forward link TWTAs).

The 4.0 and 1.26 represent the respective 6 and I dB output backoffs of these

tubes while the 0.25 and 0.4 are the DC to RF efficincies of the tubes. TWTAs

become much less efficient when operating with large backoffs. As can be

seen, the power amplifiers are already consuming 3670 W of DC power.

Increasinq the forward link TWTAs to 45 W would use an additional 1590 W. We

do not feel this is a feasible alternative due to the power generation and

weight constraints of current satellite technology. A 5000 W satellite is

assumed to be an upper bound on the total satellite power. The baseline

system a!r_y exceeds this limit when all the other components are

considered.

Since, to a large degree, the backhaul link is limited by the

spacecraft EIRP, we also should look for alternatives to the 75 W TWTAs being

used there. By replacing the single 75 W TWTA with two 20 W tubes, each

serving two channel instead of four, the output backoff can be reduced from 6

to I dB. This reduces the weak carrier problem (worst case for a 10 dB fade

is the weak signal getting 1/11 of the tube power instead of 1/31 as with four

channels), and permits a higher operating efficiency for the tubes. This

change would pick up 3.8 dB in the worst case EIRP and would increase the

power requirement by only 128 W. This would actually reduce the overall

weight of the TWTAs by roughly 60 Ibs.

We could go one step further and assign a tube to each of the 128

channels. For example, if 7.5 W TWTs were selected, then the overall power
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requirement would be the same as the baseline system (2400 W). However, now

the weak carrier problem would disappear; each uplink channel could be ampli-

fied to the 7.5 W saturation without having to share power with a stronger

adjacent signal. For this case, the downlink EIRP could be improved almost

11 dB which would increase the margin to +0.3 dB. Since there are really no

disadvantages to this approach (total TWT weight should not change signifi-

cant), this is a significant improvement to the baseline design.

Essentially the same change can be applied to the forward link.

The 20 W TWT amplifying two carriers per downlink beam can be replaced with

two 5 W tubes, one for each TDMA channel. Again, no backoff or weak signal

problems would be inherent in this design so each downlink signal could be

amplified to be full 5 W output power. This would increase the EIRP 5.4 dB

and yield a 0.4 dB margin. An added benefit would be a decrease in required

satellite DC power of approximately 470 W.

These smaller tubes (7.5 W and 5 W) being used to amplify individu-

al channels are now in the range where they could be replaced by solid state

devices. Although higher reliabiities are offered by solid state HPAs, their

lower efficiencies would require considerably more satellite DC power. TWTAs

are still recommended for this application.

6.4.3.2 Beam Size

In Subsection 5.5.1, we determined that the optimum number of beams

would fall in the range of 16 to 47; the baseline system contains 32. If this

number were increased to 47, the 3 dB beamwidth would decrease to 0.6 ° and the

gain would increase 2.3 dB to 47.3 dBi. This added spot beam gain would be

beneficial to both the backhaul uplink and forward downlink. On the former,

it could reduce the required user terminal G/T while on the later, it could

ease the EIRP requirement of these terminals. This reduction in EIRP is

especially important because of the rain attenuation problem.

With 47 beams, the number of FDMA channels per beam could be

reduced to three and the forward link TDMA burst rate could be lowered to

250 kb/s. The TWTA power should be reduced to roughly 3 W so as not to

increase the satellite power requirement.

The revised forward link budget using these higher gain beams,

shows a 1.4 dB margin. This increased margin is principally due to the

decreased burst rate. r-'ne 98 _eq_ired 3 W _Ts would __'" _ ....... +_o

satellite power requirement but slightly increase the satellite weight.

The higher gain on the backhaul uplink does not result in a cor-

responding decrease in required terminal EIRP. If the user terminal EIRP is

reduced 2.3 dB to maintain a fixed uplink C/N0, then more satellite power will

be required on the downlink because more channels exist (3 x 47 = 141 as

opposed to 4 x 32 = 128). To avoid this satellite power increase, the TWT

power per channel must be reduced to 6.5 W. This effectively reduces the

downlink C/No. To make up this difference, the uplink C/N 0 must be increased
I dB. The terminal EIRP can therefore be reduced 1.3 aB and still maintain a

positive margin.

There are two drawbacks to increasing the number of beams. As

shown in Figure 6-2, transponder weight increases slightly for antenna

6-18



diameters above 2 feet (9 beams). It is estimated that the total increase in
satellite weight resulting from the greater number of beamsis under 100 Ibs
(antenna, mount, TWTsand components). The second disadvantage occurs in the
supplier terminal. We have already seen that the supplier must have a
receiver for each beamin which he hopes to do business, up to a maximumof M.
This increase in M from 32 to 47 represents a significant increase in supplier
terminal costs. Because of these drawbacks and the limited gains associated
with the smaller beams, we view this as a trade-off of last resort. Other
trade-offs which we have examined appear to be more promising.

6.4.3.3 Revised Link Budget

Of the trade-offs examined in this subsection, the improvement

which closes the link margins for the least expense is the assignment of a

TWTA to each channel of traffic. The on-board processing would provide

several additional dB of improvement because uplink noise is not amplified on

the downlink. At least for the dryest climate region, this processing is not

needed.

Tables 6-7 and 6-8 present the link budgets for this revised base-

line system design. As can be seen, positive margins exist on both links, and

each is uplink power limited.

6.4.4 Rain Compensation

The revised system design and link budgets shown in Tables 6-7 and

6-8 are for the dryest regions of the country, and provide a 6 dB uplink

margin and 3 dB downlink margin for fading. In the wettest regions of the

country, however, additional margins of up to 13 dB on the uplink and 6.5 dB

on the downlink are required. As has been suggested for region E, one

approach to reduce this requirement is to use coding. We now consider a

number of alternatives for providing the required margin.

6.4.4.1 Increased Terminal Power

The most straightforward approach to achieving the required uplink

margin is to increase the EIRP of the terminals by increasing either the

antenna size or the power output of the HPA.

For the supplier terminals (forward link), this may be possible.

The baseline system design assumes an 8 W HPA amplifier with a 10 foot dish.

me required 13 dB uplink margin could be obtained by increasing the HPA power

to 160 W. 200 W amplifiers are currently available at 30 GHz.

For the user terminals (backhaul link), however, achieving the

required uplink margin by increasing the power may not be possible. Currently

I W solid state devices are available at 30 GHz, and 5 W amplifiers have been

built (using a number of lower power devices and combining). Thus, up to 7 dB

more EIRP could possibly be achieved in this manner. Although price versus

performance relationships are not available yet for these amplifiers (30 GHz
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Table 6-7
Revised Forward Link Budget

Uplink

EIRP

Miscellaneous loss

Rain margin

Path loss (30 GHz)

Power at S/C ant.

S/C ant. gain (CONUS beam)

Edge of beam loss

k

T (4dB NF)

N o

C/N 0 uplink

66.0 dBWi

- 5.0 dB

- 6.0 dB

-213'0 dB

-158.0 dBW

26.0 dBi

- 3.0 dB

-135.0 dBW

202.2

67.2 dB-Hz

Downlink

S/C ant. gain

Feed losses

TWT power per channel

EIRP

Path loss (20 GHz)

Rain margin

Miscellaneous loss

Edge of beam loss

Power at Terminal

k

G/T (terminal)

C/N 0 downlink

Overall C/N 0

Req data rate (300 kb/s)

Achieved Eb/N0 0-5
Req Eb/N 0 for I BER

Margin

45.0 dBi

- 3.0 dB

7.0 dBW

49.0 dBWi

-210.0 dB

- 3.0 dB

- 5,0 dB

3,0dB

-172.0 dBW

228.6

14.5 dB/°K

71.1 dB-Hz

65.7 dB-Hz

- 54.8 dB

10.9 dB

- 10.5 dB

0.4 dB
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Table 6-8
Revised Backhaul Link Budget

Uplink

EIRP

Miscellaneous loss

Rain margin

Path loss (30 GHz)

Power at S/C ant.

S/C ant. gain (0.8 ° beamwidth)

Edge of beam loss

k

T (4dB NF)

NO

C/N 0 uplink

45.3 dBWi

- 5.0 dB

- 6.0 dB

-213.0 dB

-178.7 dBW

45.0 dBi

- 3.0 dB

-I 36.7 dBW

202.2

65.5 dB-Hz

Downlink

S/C ant. gain

Feed losses

TWT power per channel

EIRP

Path loss (20 GHz)

Rain margin

Miscellaneous loss

Edge of helm loss

Power at Terminal

k

G/T (terminal)

C/N0 downlink

Overall C/N 0
Req data rate (200 kb/s)

Achieved Eb/N 0 0-5
Req Eb/N 0 for I BER

Margin

26.0 dBi

- 1.0 dB

8.8 dBW

33.8 dBWi

-210.0 dB

- 3.0 dB

- 5.0 dB

- 3.0 dB

-187.2 dBW

228.6

27.4 dB/°K

68.8 dB-Hz

63.8 dB-Hz

53.0 dB

10.8 dB

-I0.5 dB

0.3 dB
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solid state power technology is still immature), it is clear that increasing

the terminal HPA power could be a very expensive proposition. The cost of the

user HPA is already an issue without further worsening the situation by

pushing the technology to the limit. Thus, we view this approach as a last

resort; other more economical approaches need to be considered.

6.4.4.2 Increased Terminal Antenna size

Another option for providing both the required uplink and downlink

rain margin is to increase the terminal antenna sizes, thus increasing both

the terminal EIRP and G/T.

For the supplier terminals, increasing the antenna size may have

unfortunate effects on both the cost of the antenna and the tracking

hardware. As higher gain antennas are used, the antenna must be pointed more

accurately. Technology limits in tracking equipment result in an

approximately 0.02 ° minimum tracking error. This sets an upper bound on the

antenna size of approximately 49 feet. To gain the required 13 dB of uplink

margin would require an increase of the antenna diameter to 45 feet, just

barely within the limits of the tracking hardware. The cost of this antenna

would be considerably greater. Moderate increases in the antenna gain should

be quite acceptable, and would have the advantage of providing the required

downlink margin also.

For the user terminal, increasing the antenna size has several

problems. An upper limit on the antenna size (6.6 feet) limits the possible

increase in gain to 6 dB. A larger antenna would also increase the user

terminal cost, and could impact the acceptance of user terminals for reasons

noted in subsection 4.3.4. Because of the last problem, it is felt increasing

the user antenna from the baseline 2.5 feet diameter is not a feasible option.

6.4.4.3 Use of Coding

One approach to providing the required margin is to use coding on

the communications links to reduce the required Eb/N 0. This coding would be

optimized for performance in Gaussian noise, and in addition to any message

block coding (parity tail, checksum, etc.) and ARQ codes that might be

required to achieve the very high probability of receiving error free data

required by some applications.

Figure 3-9 showed the performance of several rate one-half codes

that could be applied to this system. Although in theory as much as 9 dB

could be gained by using coding, practical codes generally provide no more

than 5 dB gain, depending upon the specifics of the coding used. As lower

rate codes are used, higher gains are possible. For the sake of establishing

the feasibility of using coding, we will limit ourselves to codes of rate

approximately one-half as a reasonable compromise between coding gain and

bandwidth expansion.

Both convolutional and block codes could be applied to this

system. Since the data will be in a packetized format, a block code seems

quite a natural choice. Numerous block codes with good performance have been

discovered for operation with various size blocks and error correcting/

detecting capability. As this point, we are concerned only with the error

correcting capability of the code in order to improve the basic error rate of

the communication link. (Other error detecting codes may be required outside
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this coding.) Bose-Chaudhuri-Hocquenghem(BCH) codes [Bose, Chaudhuri, 1960],
[Hochquenghem,1959] are a fairly general class of codes which provide for
multiple error detection and correction. Many of the smaller length block

codes are actually special cases of BCHcodes.

Decoding of BCHcodes is unfortunately rather laborious. Numerous
different algorithms have been invented for decoding BCHcodes, each providing
efficient operation in various applications, and are summarized in [Michelson,
Levesque, 1985]. As the processing required to implement a BCHdecoder is
fairly complex, it requires specialized hardware in order to achieve the
required decoding times.

BCHcodes have been used with success in a number of different
applications, but generally with differing block sizes and redundancy.
Standard hardware for the decoding of BCHcodes is thus not available, and
would need to be developed for this system. This requirement for additional
hardware for the decoding function would result in an additional cost in the
terminal.

Convolutional codes are related to block codes, and can be decoded

using maximum likelihood techniques [Viterbi, 1967]. Convolutional codes are

slightly easier to decode than BCH codes, although a large quantity of

processing is still required with longer constraint lengths. Convolutional

codes may present an advantage from the implementation standpoint, as there

are a limited number of "qood" codes, and some standardization has taken

place. Many communications systems make use of the rate one-half constraint

length seven code, and integrated circuits to implement soft decision decoders

have been developed by several companies. Although these decoders are

currently commanding prices of several hundred dollars, these prices can be

expected to drop in the next few years.

Software decoders have been built, but are generally limited to

fairly low data rates (few kb/s) and may not be adequate for rates on the

order of 9.6 kb/s. Encoders are very easy to build, and can be implemented in

either software or a single programmable logic array, and thus would cost on

the order of $5 to $50 depending on the data rate required. It thus appears

that at the present, use of a convolutional code is probably more economical.

For the backhaul link, using coding would require the user terminal

• " _ ....... n_ _ ,_ _ _ _11_I_ _tO include the coding function (a t_ivlal _^w .... e), _ _ _ ............ = ....

terminal to include a decoding function. The supplier terminal decoding would

need to operate at the 200 kb/s channel burst rate, since there may be many

different user packets on the channel. The available decoders can operate at

this rate. As the supplier terminal may have M different receiver channels

(one for each uplink beam), each receiver channel will need a decoder.

Although this does not represent a trivial cost, it should be acceptable (it

would add no more than $16 K to the cost of the supplier terminal).

By including coding, 5 dB less overall C/N 0 would be required.

Thus, in the event of fading on both the uplink and downlink, the baseline

design would be only uplink limited. As shown in Table 6-9, to achieve the

same performance as in the unfaded environment the forward link would require

an additional 8.8 dB EIRP on the uplink with no change to the downlink. For

the backhaul link, we have traded some downlink margin for uplink margin

(since the user terminals are EIRP limited), to arrive at requirements of

+7.0 dB on the uplink and +4.8 dB on the downlink.
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Table 6-9

Rain ComDensation With Coding

Ba ckhaul Link

No Rain

Rain

Rain w/Coding

Uplink C/N 0 65.5 52.5 52.5

Downlink C/N 0 68.8 62.3 62.3

Overall C/N 0 63.8 52.1 52.1

Required C/N 0 63.5 63.5 58.5

Margin 0.3 (11.4) (6.4)

Rain w/Coding and

Compensation

59.5 (+7.0 dB increase)

67.1 (+4.8 dB increase)

58.8

58.5

0.3

Forward Link

Rain

No Rain Rain w/Coding

Uplink C/N 0 67.2 54.2 54.2

Downlink C/N 0 71.1 64.6 64.6

Overall C/N 0 65.7 53.8 53.8

Required C/N 0 65.3 65.3 60.3

._- _.A (,I _) r_ _)

Rain w/Coding an d

Compensation

63.0 (+8.8 dB increase)

64.6

60.7

60.3

0.4
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Since the cost of the encoder added to the user terminal is
considerably less than the expense that would be incurred in raising the
terminal EIRP, it is therefore recommendedthat coding be used on the backhaul
links. It is furthermore recommendedthat coding be used on all backhaul
links. Since decoders will be neededanyway in any supplier terminals which
service areas includinq wet regions, no additional requirements are imposed on
these terminals. Supplier terminals serving exclusively dry regions would not
need the coding, but since they would only service a sinqle beam (and thus
have a single, rather than M receivers) they would be considerably cheaper
than other supplier terminals anyways. By including coding in all user
terminals, a commonterminal and system design would be achieved.

For coding to be used on the forward link, the supplier would be
required to encode transmissions, and the user terminal would need to include
a decoding function. In the worst case, a 300 kb/s decoder would be required,
since all downlink trnasmissions would need to be decoded by the user terminal
in order to determine which transmissions were addressed to it. If someother
means of determining which slots to decode was available (i.e., unencoded
addressing or fixed/dynamic slot assignments) then the terminal would need to
decode just certain slots, and the rate of the decoder could be dropped down
to the user data rate (i.e., 9.6 kb/s). The added cost to the supplier
terminal would be just a few hundred dollars. The added cost to the user
terminal would unfortunately also be a few hundred dollars, depending on the
cost of the decoders. Since the effect of the coding is to aid the supplier
terminal most, at the expense of the user terminal, coding on the forwar_ link
does not appear to be the most economical approach.

6.4.4.4 Site Diversity

Another technique that can be used to mitigate the effects of rain

fading is the use of site diversity [Hoqg, Chu, 1975]. Site diversity makes

use of the fact that the high attenuations resulting from rain is generally

uncorrelated between sites many kilometers apart. Diversity gain is defined

by [Hodge, 1974] as the difference in fading between a single terminal and a

pair of terminals for a fixed outaqe probability. It has been noted by

[Goldhirsh, Robison, 1975] that the diversity gain as a function of the site

separations at a fixed attenuation level is approximately independent of

frequency_ This conc!l_Si_n _eems to be supported by data from [Voqel, 1976]

taken at 20 and 30 GHz. Thus, althouqh higher frequencies may suffer more

severe attenuation, they also benefit more from the diversity. Conversely,

sites with fairly low attenuation will benefit little from site diversity.

Achievable diversity gain as a function of site separation is shown in

Figure 6-3 as extracted from [Goldhirsh, Robison, 1975].

Table 6-10 shows the uplink diversity gain that would be realized

with a 12 km spacing for various regions of the country. Roughly half the

fading and half the gain would exist on the downlink. These are the maximum

gains, assuming the stations are located along a line perpendicular to the

line-of-sight path. It can be seen that by using site diversity, the required

margins cold be reduced considerably in the rainy portions of the country,

from 19 dB to 6.5 dB. Little improvement is obtained in drier areas. The

site diversity would improve both the backhaul downlink and the forward

uplink.
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Table 6-10

Site Diversity Improvement

Reqion

Uplink Site Diversity

Fading Improvement

B I dB 0.5

C 5 dB 3.5

D 1 6 dB 4

D 2 9 dB 6

D 3 11 dB 7

E 19 dB 12.5

F 2.5 dB 1.5

Residual

Fading

0.5

1.5

2

3

4

6.5

1.0

- 6 -2 7



Unfortunately, the site diversity approach requires not only a

complete second station (thus doubling the cost of the supplier terminal), but

also a link between the two stations such that the traffic can be switched

between the two stations. Additional equipment would also be required to

monitor the 20 GHz downlink and select the stronger station for operation.

(Since fading between the two frequency bands is correlated, the same station

should be used for both receive and transmit).

Since the required margins can be obtained via other techniques

(larger supplier antenna and more power), use of site diversity does not

appear economical. Site diversity may however be a worthwhile option when the

required reliabilty of supplier terminals is considered. Since high

reliability equipment required redundancy, essentially two stations would be

needed anyways, thus the cost of an additional site might not be

prohibitive. Since this study focused primarily on the user terminal trade-

offs, this issue was not investigted further.

6.4.4.5 Reduced Beam Size

It is also possible to provide additional margin by altering the

satellite design. The baseline satellite design assumes state-of-the-art LNR

and TWT performance, so no improvement here is possible. On the other hand,

the antenna beam size could be reduced thus increasing the antenna gain.

A straightforward increase in the number of beams from M=32 to M=47

would yield a gain of 2.3 dB on the backhaul uplink and forward dowmlink.

Unfortunately, as noted in subsection 6.4.3.2, supplier terminals serving

large coverage areas would need more receiver channels in order to receive

information from all beams. In light of the small improvement that can be

achieved this way, it is not recommended.

A slightly different approach is to use different beam sizes for

the various regions. The dry regions could be covered by large beams (and

hence less gain) while the wetter regions would be covered by smaller beams

(and hence more gain). An approach for generating three different beam sizes

(common to uplink and downlink) from two sets of horns and a single sandwiched

reflector has been suqgested by [Berk, et.al., 1981], but problems with

physically arranging the feeds were noted. Assuming these problems could be

solved, variable uplink compensation could be built into the satellite as

shown in Table 6-11. The number of beams is held coi,_ta,_t at M-32, but the

number of beams in dry areas is reduced (and the beam size increased), while

the number of beams in wet areas is increased. Although only 4 dB of the

19 dB fade is gained back using this approach, the difference between maximum

fades is reduced 28 percent (18 to 13 dB). The results shown in Table 6-11

are a best case scenario. Geographical limitations will generally not allow

such a neat solution, hence a slightly larger number of beams (or less gain)

will result.

In order to develop the differing beam sizes, the reflector size is

increased as needed for the smallest beams. For the wider beams, the feeds

illuminate only a portion of reflector surface. In order to achieve the beam

sizes shown, the satellite aownlink reflector size would need to be increased

from 4.5 feet (1.3 m) to 6.9 feet (2.1 m).

Little information is available concerning the construction of

multi-beam satellite antennas with differing beam sizes. In light of the
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Table 6-I I
Variable BeamSize Approach to Rain Compensation

Region

Re lative

Area

Uplink

Fading

No. of Beams No. of Beams Beam

(0.8 ° spots) (Variable spots)size Gain

Residual

Fading

B

C

D I

D 2

D 3
E

F

0.15

0.07

0.23

0.17

0.10

0.09

0.19

I .00

I .0 dB 5 4 I .0 °

5.0 dB 2 2 I .0 °

6.0 dB 7 6 I .0 °

9.0 dB 6 6 0.7 °

11.0 dB 3 4 0.7 °

19.0 dB 3 5 0.5 °

2.5 dB 6 5 I .0 °

32 32

-1.0 dB

-I .0 dB

-1.0 dB

+I .0 dB

+1.0 dB

+4.0 dB

-1.0 dB

2.0 dB

6.0 dB

7.0 dB

8.0 dB

!0.0 dB

15.0 dB

3.5 dB
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relative immaturity of this type of antenna, and questions regarding the

physical arrangement of the beams, it is not recommended as an approach to

providing the required margin. This is an area that should be considered for

future study.

6.4.4.6 Satellite Processing and Power

Baseband processing was investigated in subsection 6.4.1 as an

alernative for gaining link margin, but was discarded in favor of other

approaches. We now reconsider the use of baseband processing (demod/remod) in

order to provide some additional margin.

For the revised baseline design, adding demod/remod in the

satellite would provide approximately a 2 dB margin on the uplink, and a 5 dB

margin on the downlink due to the decoupling of the uplink and downlink

noise. The added weight and power for simple demod/remod processing is fairly

small, so this is an atrracive option.

We could also modify the satellite downlink power allocation for

the various spot beams. _he baseline design provides the same power to all

beams. This results in excess margin for dry areas, and inadequate margin for

wet areas. Without increasing the total power demand, we can re-allocate the

power for each beam according to the expected fading.

Table 6-12 shows how we could vary the power for the various

regions; PA's for beams covering region E would be increased 5.2 dB from the

baseline 5 W amplifiers to 16.5 W; PA's for reqions B would be reduced 3.8 dB,

to 2.1 W, etc. This results in the same margin for all links when downlink

fading is taken into account. Unfortunately a deficit of 1.3 dB exists in all

cases.

Table 6-13 shows the results of a combined approach. Baseband

demod/remod is used on beams in region E (gaining 5 dB of downlink margin for

those links). Again, the total power is left constant, but since less gain

variation is required, a positive 0.5 dB margin is achieved on all links.

Since the baseband processing is done just in region E, it is only

needed on approximately 3 beam x 4 channels = 12 channels. Thus, the impact

on satellite weight is minor, estimated at less than 20 Ibs. The satellite

power is increased only by the added baseband processing hardware (the total
...... J _ ............ vT_

approach looks quite good for combating the forward downlink fading.

6.4.4.7 Spread Spectrum

In a spread spectrum multiple access system, vastly different

approaches to rain compensation are possible. In particular, increased margin

can be obtained by merely increasing the spreading factor (bandwidth) of the

system.

Note that since the SSMA system is interference limited, increasing

all of the terminal's EIRP will not provide any increased margin. The

required margin can be obtained by increasing the spread factor. Providing

the required 19 dB margin for region E would thus require increasing the

spreading factor by 79.4.
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Region

Table 6-12
Downlink Power Adjustment for Fading

Numberof Power Downlink
Beams Adjus tment Fading

Rain
Margin

Total

Margin

B

C

D I

D 2

D 3

E

F

5

2

7

6

3

3

6

0.42 = -3.8 dB

0.66 = -1.8 dB

0.74 = -I .3 dB

1.05 = 0.2 dB

I .32 = I .2 dB

3.31 = 5.2 dB

0.50 = -3.05 dB

0.5 dB

2.5 dB

3.0 dB

4.5 dB

5.5 dB

9.5 dB

I .25 dB

3.0 dB

3.0 dB

3.0 dB

3.0 dB

3.0 dB

3.0 dB

3.0 dB

-I .3 dB

-1.3 dB

-1.3 dB

-I .3 dB

-1.3 dB

-1.3 dB

-I .3 dB

Region

Table 6-13

Downlink Power Adjustment for Fading

with Baseband Processing

Number of Power Downlink

Beams Adjustment Fading

Rain

Margin

Total

Margin

B

C

D I

D 2

D 3

E

F

5

2

7

6

3

3

6

0.63 = -2.0 dB

1.00 = +0.0 dB

1.12 = +0.5 dB

1.58 = +2.0 dB

2.00 = +3.0 dB

1.58 = +2.0 dB

0.75 = -1.25 dB

0.5 dB

2.5 dB

3.0 dB

4.5 dB

5.5 dB

9.5 dB

1.25 dB

3.0 dB

3.0 dB

3.0 dB

3.0 dB

3.0 dB

8.0 dB

3.0 dB

0.5 dB

0.5 dB

0.5 dB

0.5 _-t/K)

0.5 dB

0.5 dB

0.5 dB
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Since the traffic of each beam uses a separate SSMA channel, all

the users of a particular beam will have similar rain attenuation statistics.

Therefore, the spread factor for each beam could be optimized for the worst

case rain fade. Table 6-14 lists the additional spread factor and the per-

centage of traffic expected of each region. The sum of their products yields

the total additional bandwidth spread factor needed to compensate for the

uplink rain attenuation.

The drawback to this approach is the non-uniform chip rates of the

user terminals. Some additional bandwidth could be traded for more uniform

chip rates (two or three rates used to cover all seven regions).

Other alternatives are the non-uniform spot beam sizes of

Subsection 6.4.4.5, or a reduced availability in the wetter climates.

6.4.4.8 Rain Compensation Conclusions

We have found techniques to achieve the required margin on three of

the four links; the backhaul downlink, and the forward uplink and downlink.

We have also achieved a portion of the required margin on the backhaul

uplink. Table 6-15 summarizes the selected approaches. Our only remaining

problem is to provide an additional 7 dB of margin on the forward uplink.

Unfortunately, little can be done in the satellite to help the

backhaul uplink; the satellite LNR is already state-of-the-art; smaller beams

and baseband processing provide little additional margin at considerable cost.

Thus, the only available options for gaining the required 7 dB are to 1)

increase the user antenna size to 4.6 ft, 2) increase the user HPA power to

5 W, or 3) employ non-uniform spot beam sizes.

None of these approaches are particularly desirable. Although the

first two are technically feasible, they have other problems. Increasing the

amplifier gain is economically unattractive. Increasing the dish size not

only is economically unattractive, but may impact consumer acceptance of the

system. Building conformal phased array type antennas would solve the accep-

tance problem, but is currently economically unattractive. Further exami-

nation of non-uniform beam forming is needed before the last option can be

recommended. Thus, for terminals in region E, these technology areas become

major issues.

6.5 RECOMMENDED SYSTEM DESIGNS

This tradeoff section has identified two alternative system

approaches for the FSS system: one based on Pure ALOHA access to 200 kb/s

FDMA channels, and a SSMA system at the user data rate. We will summarize

these two approaches here and present estimates of the total system cost.

6.5.1 Pure ALOHA System

This system is the most straightforward approach to a FSS design;

all of its components are proven technology. Table 6-16 summarizes this

design. Even with the additional power, larger terminal antenna sizes, and

multibeam satellite antenna, the backhaul uplink is still 7 dB shy in the

wettest climate region. (The required link margin is met in all other

regions.) Thus cost of terminals in this region will have to be more

expensive or the 0.995 availability will not be met.
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Table 6-I 4
Rain Compensation for SSMA

Region Probabi li ty

Pr(_)

Uplink Fade Margin F r

and Spread Factor

PFFr

B

C

D I

D 2

D 3

E

F

1.3

6.8

7.4

46.3

9.4

11.8

17.0

I dB = 1.26

5 dB = 3.2

6 dB = 4

9 dB = 7.9

11 dB = 12.6

19 dB = 79.4

2.5 dB = I .8

Total Bandwidth Increase

0.0164

0.218

0.296

3.66

1.2

9.37

0.306

15.1
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Table 6-15

Rain Compensation Approach

Backhaul Forward

Upli nk Down link Upli nk

Coding (Backhaul) +6 dB +1.7 dB

Larger Supplier

Antenna +4.8 dB +4.8 dB

to 17.4 feet

Satellite Demod/Remod

Region E and

Non-uniform

Beam Powers

Increase Supplier +8.2 dB

Transmit Power

to 53 W

TOTAL 6.0 dB 6.5 dB 13.0 dB

Required 13.0 dB 6.5 dB 13.0 dB

Excess Margin

Downlink

+7.0 dB

7.0 dB

6.5 dB

(7.0) dB 0 dB 0 dB 0.5 dB
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Table 6-16
RecommendedSystem Design

User Terminals

Pure ALOHA Access

200 kb/s burst rate

2.5 foot antenna

I to 5 W HPA

500°K LNA

Rate I/2 convolutional encoder

FLL receiver accuracy of 10 kHz

Supplier Terminals

TDMA access

300 kb/s burst rate

17.4 foot antenna

53 W HPAs

400"K LNAs

Soft-decision Viterbi decoders

Satellite

FDMA/TDMA hybrid

32 spot beams (0.8 ° ) to user terminals

- 4.3 foot donwlink reflector

- 2.9 foot uplink reflector

I CONUS beam to supplier terminals

Separate TWTA for each channel of traffic

(saturated operation)

TWTA power on spot beams based on maximum

fade margin

3.2 W to ...._-- D

- 10 W to region E

Signal regeneration of region E traffic

Number of channels per beam proportional

to expected traffic

4 dB noise figure LNR

Pilot tone in CONUS beam
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6.5.2 Spread SpectrumMultiple Access System
Becauseof the manyadvantages and disadvantages of an SSMAsystem

relative to Pure ALOHA,and due to the uncertainty of the cost of the RF
components of the user terminals, we recommendthat SSMAbe left open as an

alternative for the backhaul links. Since the 9600 b/s data rate would

require up to 13 dB less C/N 0 on this link, the necessary link margins could

be easily met. This would enable both the user terminals and satellite to

operate with less power. Tne penalties are I) a factor of ten more bandwidth

required on the backhaul link (533 MHz vs 55 MHz), and 2) a factor of twenty

more accuracy in the terminal's frequency tracking circuitry (500 Hz versus

10 kHz). At Ka-band, the former is not necessarily disasterous, and the

latter can be dealt with by further research and larger production quantities.

6.5.3 Cost of Recommended System

6.5.3.1 Satellite Cost

In subsection 6.3.2, we presented some rule-of-thumb relationships

between satellite cost and weight. Although these relationships are gross

estimates at best, they will provide some information for future use if this

FSS concept is pursued.

Equation (6.14) approximates the BOM satellite weight as a function

of its communications package power and weight. We can use _quations (6.4)

through (6.6) to derive the weight of the satellite antenna and transmitter

and the other components were estimated in Tables 5-I and 5-3. Since the

forward and backhaul links are completely separate and use separate

components, both must be accounted for in the calculations. _nese weight

calculations are shown in Table 6-17. The prime power calculation uses

Equation (6.7) to obtain the DC to RF efficiency. Since the HPAs can operate

at saturation, we have assumed a _TWT of 0.4 and therefore _ is 0.34.

Similarly, the communications package power requirement can be

derived. The primary power consumers are the HPAs. We showed in Subsection

6.4.3.1 that approximately 3200 W of power are required by the 192 TWTAs

onboard the spacecraft. The power requirement of the other components of the

FDMA/TDMA hybrid satellite architecture from Table 5-3 is 128 W, and the

signal regeneration of region E traffic consumes 20 W. The total of these

components' power requirements is 3350 W. When the power supply efficiency

_PS is taken into account, the power requirement of the communication package

(Pc) is 3350 W/0.85 = 3940 W.

Equation (6.14) can then be solved by using these values of W c and

Pc:

Wsa t = 800 + 1.53(2000) + 0.8(3940)
= 7000 Ibs.

This is a very heavy satellite, beyond capabilities of most launch vehicles.

Presently, only the US space shuttle (STS) has the capability of lifting a

payload of this size.

The total satellite power can also be calculated. By using

Equation (6.15), this power requirement is:
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Table 6-17

Satellite Communications Package Weight

Want = 20 D20 + M/9

= 20(4.265) + 32/9

WTWTA = M x L x (I + P/12)

= 32 [4 channels x (I + 7.5/12)

+ 2 channels x (I + 5/12)]

Wpp
= 0.4 x M x L x P/n

0.4 x 32 x [4 x 7.5 + 2 x 5]/0.34

Other components

Demod/remod of 12 channels

90 ibs

300 Ibs

1505 Ibs

98 !bs

14 Ibs

W c
2000 ibs
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Psat = 240 + 1.26(3940)
= 5200 Wof DCpower.

Using current solar panel efficiencies of almost 9 W/ft 2, this satellite would
need roughly 580 ft 2 of panels.

The last step is to use the weight figure to estimate the costs of
the spacecraft development. From_uation (6.1 2), the recurring cost is

C R - 0.031 (7000 ibs) 0"93

= $116.7M.

The non-recurring cost from Equation (6.13) is

CNR E = 0.16 (7000 Ibs) I°15

= $422.7M.

At first glance, these values seem unrealistic. However, as we have noted,

these cost relationships are old and of questionable accuracy. A more

detailed cost analysis is warranted if a FSS system is to be pursued. The

SAMSO Unmanned Spacecraft Cost Estimation Model developed by Aerospace for the

US Air Force Space Division could potentially be used for this purpose.

An alternative is the use of more than one satellite. By using two

satellites, each generating half (16) the spot beams, many of the power and

weight problems would be solved. For example, the payload weight would be

quite manageable for several available lauchers, and the non-recurring,

developmental cost could be halved.

It should be noted that the satellite power, and hence the weight,

is driven by the backhaul TWTAs which amplify the signals destined for the

CONUS beam. With 128 tubes each consuming 7.5 W of output power, 2400 W (or

72% of the satellite's total power requirement) are needed by this backhaul

link. Since this link is uplink limited, especially from region E, the

downlink power could be cut in half with only a 0.4 dB reduction in margin (to

-6.8 dB) for that region. All other regions would have positive link margins.

This would reduce the communications package power requirement Pc to 2530 W

and weight W c to 1400 ibs. This in turn cuts the overall satellite weight and

single satellite system design.

6.5.3.2 Ground Segment Costs

Determining the ground segment costs is unfortunately rather diffi-

cult due to the current immaturity of components operating in the 30/20 GHz

range. These components are only available in quite limited quantities, if

available at all. Furthermore, since most development efforts in the milli-

meter wave region are military sponsored, the costs of these components are

generally quite extreme. Cost data for consumer versions of 30/20 GHz

electronics is simply not available.

Thus, two approaches to estimating the terminal costs have been

taken. The first is to compare the capabilities and costs of current small

aperature terminals with the capabilities required for the 30/20 GHz terminals
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envisioned by this study. By comparing the required capabilities of our base-

line terminals with existing C and Ku-band terminals for which there is cost

data available, we can at least get an order of magnitude idea of what the

cost should be. Tne second approach is to estimate the cost of terminals on a

component basis, using a combination of current cost data, learning curve

relationships, and educated guesses.

Although neither of these techniques will yield particularly

accurate results given the rather sparse data available, we feel that the

results will provide a bound on the cost of the terminals, and at least

highlight those areas of the terminal that impact the cost the most.

Only the user terminals are considered, since their cost is so

important. Because there could be so many user terminals, any increase or

decrease in their cost would be multiplied. Improvements in the cost of the

user terminals would most likely be in the RF areas and would be shared by the

supplier terminals. Thus, inexpensive user terminals are the key to economic

feasibility.

6.5.3.2.1 Small Aperature Terminal Costs

Cost ranges for small aperature terminals were obtained from a

variety of sources and have been compiled in Table 6-18. _ne frequency and

performance capabilities of these terminals is from C-band receive only

terminals to Ku-band full duplex, hiqh data rate terminals. Tne far right

column of Table 6-18 shows an extrapolated terminal cost based upon a million

terminal production quantity, using the learning curve relationships from

[Berk, et al., 1981].

Besides the obvious difference in frequency from our 30/20 GHz

terminals, these terminals also have other more subtle differences which make

them generally more complex than our 30/20 GHz terminals would be. C-band

TVRO terminals, for example, require antenna pointing systems since there are

a number of satellites that a user may wish to watch. TVRO terminals are also

designed for relatively wide bandwidth analog television channels. On the

other hand, they do not include any transmission or access control equipment.

Frequency accuracy is also not as much of an issue as it is at Ka-band.

Both C-band and Ku-band VSATs generally use TDMA access schemes,

and thus require more control hardware than wuuld i,e _equired for u_....._..._--_^-

access schemes. VSAT antennas are also usually larger, in the 4 to 6 ft

range.

Thus, the complexity of the terminals required for the FSS system

should lie somewhere between the complexity of the TVRO and full duplex VSATs,

probably closer to the VSATs. Thus, Ka-band FSS terminals would cost at least

$4,000 (Ku-band low data rate terminals), and would probably cost about

$10,000 (the same as the most expensive Ku-band terminals).

Of course, this is a rather crude estimate. An estimate based upon

the various components of the block diagram is done below to further refine

this estimate.
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Table 6-I 8
VSATand TVROTerminal Cost Data

Frequency

C-band

C-band

C-band

Ku-band

Ku-band

Ku-band

Capability Quantities Cost (KS)

Receive On ly

Television

Receive Only

~ 19 kb/s

Full Duplex

~ 19 kb/s

Receive Only

Full Duplex

19 kb/s

Full Duplex

millions I-2

30,000

2

5-6

1,000(?) I-5

I ,000 7-I 0

Quantity cost (KS)

I-2

1.5

3-4

I-3

4-5

100 15-20 7-11
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6.5.3.2.2 Terminal Component Costs

The second approach to estimating the terminal cost is to sum up

the cost of the components of the terminal. For some portions of the

terminal, cost data for Ka-band components is available, where for other

portions cost data must be extrapolated from similar equipment operating at

different frequency bands. Detailed derivation of cost/performance relation-

ships for the RF components (LNA, HPA, and antenna) is presented in Section

7.1.

Cost data for currently available LNAs operating at 30 GHz was

obtained from several sources. LNAs with noise temperatures as low as 300 K

are currently available as catalog items, with prices running in the range of

$5,000 to $10,000. LNAs for commercial purposes in large production

quantities should be considerably cheaper. Quantity prices for LNAs was

extrapolated from C-band and Ku-band TVRO data which indicates that the prices

of commercial quantity LNAs could come down to as low as $100-$300 in the near

term if large production volumes are realized.

I Watt solid state amplifiers in the 30 GHz range have just

recently become available as catalog items. Currently solid state HPAs cost

about the same as TWTAs for low power levels. Both types of amplifiers are

currently commanding prices of about $20,000-$30,000, although significant

price drops are likely in the near term for the solid state amplifiers.

If we assume the solid state amplifiers will show similar price

drops in the future as those indicated by the LNAs, IW solid state HPAs might

be available for $400 to $900 by the mid 1990s.

For the antenna, most currently available antennas operating in the

30/20 GHz bands are quite expensive, but are also considereably more complex

and higher performance than required for this application. Based on the cost

of C and Ku-band dishes, a 2.5 ft 30/20 GHz antenna should run about $150 to

$200 in production quantities. Existing C or Ku-band antennas could probably

be adapted to Ka-band use by installing a Ka-band feed on an existing dish

design, resulting in a $500 to $1000 antenna in the near term.

The cost associated with the pilot tone tracking receiver is likely

to be a significant contributer to the overall cost. The pilot tone tracking

receiver will require components operating in the 30 GHz range. We have

assumed the cost of this circuitry would be about $2,000 currently, possibly

coming down to $500 in the mid 1990s. Major breakthroughs in this area may be

required in order to achieve these estimates.

Of the upconverter and downconverter, most of the cost is in the

downconverter; no upconverter is necessary if a direct carrier modulation

scheme is used. TVRO receivers/downconverters run about $400 currently, and

are probably more complex than would be required for the Ka-band system. TVRO

receivers must tune various frequencies, control the antenna positioner, and

tune over fairly wide bandwidths, and generally provide user-features such as

frequency memories, etc. Fairly little tuning capabilities would be required

for the FSS receiver, and no user interface would be required (any required

channel selection would be done automatically by software in the PC). Thus,

the increased cost of doing downconversion from Ka-band rather than C or

Ku-band should be offset by the less complicated design required. Intially

these receivers would of course be more expensive, probably $1000 or so.
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Other components of the terminal are less critical as they do not

require any millimeter wave circuitry. This includes the modem and control/

interface hardware. A 300 kb/s demodulator and 200 kb/s modulator are also

required (modem). The cost of the modulator and demodulator are fairly low,

and the required components are available off-the-shelf.

Some control hardware is required for the forward link in order to

extract the desired packets of information and demultiplex the 300 kb/s data

stream from the demodulator. This would be beyond the capability of the PC,

making this additional hardware necessary. Only a small amount of hardware

would be required to implement this control. The remaining control could be

done in software in the PC (formatting and buffering packets and processing

acknowledgments, etc.).

Table 6-19 shows the estimated components cost of the terminal,

both for 1986 and as extrapolated in the mid 1990s. These cost figures are in

1986 dollars. Complete terminal costs would range higher, as assembly and

testing costs are not included. It can be seen that although to build a

30/20 GHz user terminal would cost at least $29,000 to $45,000 now, this price

could drop considerably by the mid 1990s. This would require, however, that

volume production of commercial components occur for the millimeter wave

components, and may require a breakthrough in achieving the required frequency

accuracy (i.e., a more economical scheme than the pilot tone tracking, or

inexpensive millimeter wave sources). By optomistically assuming these

developments occur in the near term, terminal prices are envisioned to come

down into the $2,000 range. A more conservative estimate would place the

terminal price in the $5,000 to $10,000 range in the mid 1990s.
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Table 6-I 9
Terminal Component Costs

Component 1986 mid 1990s

Antenna 500-1000 150-200

LNA 5,000-10,000 100-300

HPA 20,000-30,000 400-900

Pilot Tone 2,000 (?) 500 (?)

Receiver

Up/Down Converter 1,000 400

Modem 500 100

Control/Interface 200 50

Hardware

TOTAL 29,200-44,700 1,700-2,450

Required Development

mass production

mass production

breakthrough

mass production of

mm wave components
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SECTION7
TECHNOLOGYCONSTRAINTSANDCOSTDRIVERS

In this section we summarizethe current status of the technology
required for the proposed system. We focus first on the ground terminal
technology required to implement the user terminals. We consider primarily
the millimeter wave components, for which we derive cost versus performance

relationships where ample data is available. We then examine some of the key

technologies required for the satellite design.

7.1 USER TERMINAL

Our baseline design has resulted in a terminal design that requires

component performance levels that are within the demonstrated state-of-the-

art. This was done intentionally in order to achieve a technically feasible

terminal design. This does not mean, however, that the components are readily

available or easily manufactured. Many of the required components are

currently extremely expensive. Thus, we now examine these key components with

an eye towards their relative maturity. Specifically, we are concerned with

the mass producibility and cost of the components.

7.1.1 Terminal Antenna Manufacture

The terminal antenna does not appear to be a terminal cost driver

or represent a technological risk. For small antennas in the range of

interest (2.3 to 6.6 feet), a number of manufacturing techniques are possible;

stamping (sheet metal), spinning (fiberglass), molding, and machined casting,

depending upon the required surface accuracy [Frediani, 1979].

In subsection 4.2.1.2 it was shown that surface accuracies on the

order of 0.015 inches are required in order to limit the loss due to surface

roughness to less than I dB at 30 GHz. Achieving this accuracy would require

expensive precision spinning or molding, the more expensive techniques.

Stamping the antennas out of sheet metal would result in surface accuracies of

only about 0.025 inches, corresponding to a loss of 2.7 dB at 30 GHz and

1.2 dB at 20 GHz.

Currently TVRO antennas are mass produced by assembling panels of

stamped sheet meta!_ TSis results in surface accuracies of 0._P_ _n _.0_

inches, quite acceptable for the 4 and 16 GHz bands on which they are used.

These antennas are fairly low cost, ranging from $200 to $900, depending on

size. Smaller antennas built using this technique would be quite inexpensive.

For the 30/20 GHz band, this low cost manufacturing technique could

be used if manufacturing tolerances could be improved. Improving the surface

accuracy from 0.025 to 0.015 inches would yield a 1.7 dB improvement at

30 GHz. This should be possible with the small 2.5 foot dishes. Molded

fiberglass might also be able to inexpensively provide 0.015 inch surface

accuracy from a one piece mold.

A more difficult problem with the manufacture of antennas for

30/20 GHz is the difficulty of properly aligning the feed [Berk, et.al.,

1982]. This is caused by the very tight tolerances and narrow beams resulting

from the small wavelength. Assembly of the antenna may be the limiting factor

in the the manufacturing process.
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Figure 7-I illustrates the gain that can be expected at 30 and

20 GHz for parabolic antennas in the 2.3 to 6.6 foot range. This gain assumes

aperature effeciencies of 55%, and the worst case 0.025 inch surface accuracy,

and thus represents a lower bound on the antenna gain.

Price versus performance for parabolic dishes at 30 GHz is

illustrated in Figure 7-2. This price relationship was obtained by scaling

the price versus performance relationship for 4 and 12 GHz TVRO antennas.

Price information from a number of commercial TVRO dealers was obtained.

Since the same manufacturing techniques are used, the same cost versus size

relationship for the basic dish was assumed. The cost of the Ka-band feed

will be higher, and was estimated from a comparison of C and Ku-band feed

costs.

Since the prices on 4 and 12 GHz equipment represent different

points on the learning curve (millions of 4 GHz antennas have been built,

where only thousands of 12 GHz antennas have been built), these prices were

corrected for varying quantities using a learning curve relationship for

millimeter wave equipment suggested by [Berk, et.al., 1981]. The price of the

n th terminal C n is given by

-0.074

C n = C1n

where C I is the cost of the first terminal. It is assumed that component
costs follow this same learning curve. A sales volume of 500 thousand was

assumed in computing the cost of the Ka-band antennas.

Phased array antennas are another option that has been suggested,

and may provide some solutions to the problems with parabolic dishes. Phased

array antennas can be built using microstrip technology. Microstrip is an

easily fabricated structure, where parallel plate waveguide is implemented by

fabricating a circuit board trace over a ground plane. Microstrip circuits

can thus be produced by etching printed circuit boards in the usual manner.

Although single microstrip elements have low gain and bandwidth,

phased arrays can, and are, being built [Ladrach, et.al., 1982]. Such

antennas should be quite easy to manufacture. We envision it might be

possible to manufacture a phased array antenna by simply printing the array

pattern with a conductive ink on to a flexible substrate.

Thus, it might be possible for the cost of this type of antenna to

be considerably less than that for the parabolic dishes. In addition, phased

arrays also present the advantage of being less conspicuous. Achieving gains

with the phased array similar to the parabolic dish will require arrays of

comparable area (i.e. 5 to 30 square feet).

There is considerable interest in the development of conformal

antennas for military airborne applications. We expect considerable progress

in this area is likely in the next few years. This technology should be

monitored for possible application to the 30/20 GHz FSS.
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7.1.2 Terminal HPA

The terminal HPA may represent a significant cost driver in the

overall terminal design. Although a fair amount of development of solid state

power amplifiers in the millimeter wave bands has been done, to our knowledge,

no large scale production has been done.

The most commonly used power device for 30 GHz and above is the

IMPATT diode. As of 1983, pulsed amplifiers with peak outputs of up to 28 W,

and CW amplifiers with outputs of up to 2.5 W had been demonstrated at 30 GHz

[Blakey, et.al., 1983]. The higher power amplifiers are built by combining a

number of lower power devices (see Subsection 5.4.2). More recently, solid

state amplifiers with up to 35 W have been available in the millimeter-wave

bands.

The individual device power is currently limited to about one watt,

and high output devices do not appear likely in the near term, as the output

power of IMPATTs is limited by electronic and thermal mechanisms. Thus, 5 to

10 W amplifiers will probably continue to require multiple devices and

combining. The combining circuitry is usually implemented in microstrip.

Figure 7-3 extracted from [Ying, 1983] illustrates the state-of-the-art in

solid state HPAs. Not too much improvement has been achieved in the last few

years except at 20 and 44 GHz where higher power amplifers are being built for

military systems [AFSC, 1985].

No information concerning the mass producibility of these

amplifiers was available; it is believed that little work has been done in

establishing repeatability and mass producibiity for these amplifiers. Thus,

future efforts in these areas should be encouraged. TI has recently been

awarded a million dollar contract to develop "affordable" amplifiers for

operation in a 60 to 18 GHz range [MSN, 1986].

7.1.3 Terminal LNA

A conservative terminal design was selected with respect to the LNA

performance requirement. A 500°K device (4.4 dB noise figure) was assumed

which is well below the current state-of-the-art. Currently 3.5 dB noise

figure devices are available off-the-shelf (although at considerable

expense). Higher performance devices have been demonstrated, as low as 2.0 dB

[Sakurai, 1986]. Since sky background sets a limit on the improvement that

can be obtained by better noise figure amplifiers, no advancement of the

state-of-the-art in LNAs is required for the baseline system design.

The ability to build, in quantity, affordable LNAs at lower

frequencies has been demonstrated by the TVRO industry. It seems reasonable

to expect the same will be possible at the higher frequencies. Currently,

however, there is a large gap in the price of LNAs for consumer use at 4 and

12 GHz which run between $100 and $400, and the prices for LNAs at 20 GHz

which can be on the order of $5000. It should be noted that LNAs for 20 GHz

are primarily targeted at military users and thus are produced in small

quantities and enjoy relatively little competition.

Price reduction in LNAs seem quite likely in the future, especially

if large consumer volumes can be established as was the case for TVRO.

Figure 7-4 illustrates the price versus performance relationship for 20 GHz

LNAs extrapolated from the TVRO data. Again, the prices have been corrected

for the learning curve relationships. A sales volume of 500 thousand was

assumed.
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7.1.4 Frequency Accuracy

A final area of concern in the terminal design is the frequency

accuracy that can be achieved. Most systems being designed or considered for

operation in the 30/20 GHz band do not have a tight frequency accuracy

requirement as very high (Mb/s) burst rates are generally used. For our

system with lower burst rates and FDMA design, frequency accuracy becomes an

issue.

Although it is technically feasible to achieve quite good frequency

accuracies in the terminal design, the cost could be prohibitive. Millimeter

wave sources can be purchased for about $1000 to $3000, but exhibit accuracies

of only about 15 MHz (I part in 10,000). Phaselocked sources can be built

with accuracy to a few Hz, but the higher accuracies require considerable

expense. Frequency accuracies of 30 kHz or better (I part per million) are

required for the FDMA system design assumed.

The cost of the frequency reference subsystem is a direct function

of the frequency accuracy to be developed. Cost versus frequency accuracy for

lower frequencies (10 MHz range) are listed in Table 7-I. Achieving the

desired accuracy at just 10 MHz is quite expensive, requiring the use of

temperature compensated ovenized oscillators. Although similar accuracies

could be achieved at 30 GHz by using a PLL to lock a 30 GHz source to such a

reference, this would result in the additional cost of the tunable 30 GHz

oscillator and millimeter wave PLL.

Table 7- I

Cost versus Frequency Accuracy at 10 MHz

Frequency

Accuracy Cost

10 -4 $10

1 0-6 $I 00

I O-8 $5O0

1 0-I 0 S 9,000

10-I I $25,000

Although ovenized sources at millimeter wave ban_s might eventually

become available, they will probably also be prohibitively expensive. It is

also likely that these millimeter wave sources will exhibit frequency

accuracies on the order of I part in 10,000, an order of magnitude short of

the requirement. Thus, achieving the required frequency accuracy with the

terminal alone in this manner appears to be prohibitive.

The baseline design has therefore assumed that the satellite will

provide a pilot tone on the downlink which is used as the primary frequency

reference for all the terminals. It is still necessary, however, for the

terminals to phaselock a 30 GHz transmit source to the 20 GHz pilot tone.

Upon initial start-up, the terminal may have very poor frequency accuracy, and

an acquisition problem then results; the terminal would need to search a

10 MHz or more frequency uncertainty for the pilot tone.
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Thus, even with the recommended approach, a 30 GHz source and PLL

circuitry is required in the terminal. In order to implement this PLL,

harmonic mixers, downconversion, and phase detectors operating in the

millimeter wave region will be neccesary. All of these components are

currently very expensive.

Providing the required frequency accuracy is thus an area that

could benefit from additional study. Other techniques might need to be

developed or new, more economical, stable sources might be required.

7.2 SATELLITE

For the satellite, technology limitations rather than cost

considerations are the driving factor. Although devising low cost terminals

was very important, a low cost satellite is not as critical, since the cost of

the satellite will be borne by the business developing the system, and can be

spread out over all the users.

The baseline satellite design assumes technology that is believed

to be feasible, but has not yet been demonstrated. In some areas, advancement

in the state-of-the-art will be required in order to build the satellite with

the desired performance. Some components of the satellite are also critical

in that the high performance required is necessary in order to accommodate the

small earth terminals.

7.2.1 Multi-Beam Antennas

The satellite antenna for the FSS design will require a multi-beam

antenna design. Multi-beam antennas can be built usinq phased arrays,

parabolic reflectors, or lens technology. Phased arrays are generally heavy

and complex and permit only a single beam to be generated. Lens antennas are

also heavy and complex, and are generally more lossy than other techniques.

Reflector antenna designs provide the highest gain, are lightweight, and are

adaptable to a number of simultaneous beams [Frediani, 1979].

The reflector type multi-beam antenna design has been used in both

the Japanese CS satellites, and has been proven in breadboards for the ACTS

program, both operating at 30/20 GHz [Myhre, 1983]. The reflector type multi-

beam antenna probably represents the best choice antenna for the FSS antenna

design. A typical multi-beam reflector antenna design is shown in Figure 7-5.

Multi-beam antennas demonstrated to date, however, have only

generated a limited number of beams. The Japanese CS satellite generates four

spot beams; the ACTS satellite will generate two scanning beams and ten fixed

beams. The satellites use a number of feed horns to illuminate the reflector

for each spot beam.

For the ACTS satellite, beams are formed by illuminating a set of

seven horns, with most of the power going to the center horn, and the

surrounding six horns receiving some additional power in an appropriate phase

relationship. This is necessary in order to achieve the required sidelobe

levels [Scott, et.al., 1982]. For closely spaced cities, this means that some

horns are involved in generating more than one beam. Thus diplexers are used

in order to combine the two (or more) signals together before being fed to the

horn [Chen, etoal., 1982].
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SIVO: COMMUNICATIONS SATELLITE SYSTEMS
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FEED ASSEMBLY

VERTICAL POLARIZATION
FEED ASSEMBLY

Figure /-b Typical Antenna System Configuration
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In order to build an antenna with continuous earth coverage using

narrow spot beams, a more complicated beam forming network than has previously

been demonstrated would be required. An alternative where a single feed horn

per beam is utilized would simplify the beam forming network, but there may be

difficulties in achieving the required sidelobe levels as was noted in

Subsection 3.6.4. _ne effect of this would be to increase the interference

between beams using the same frequencies. By reducing the amount of frequency

reuse, however, the sidelobe problem could be eliminated.

Development of the multi-beam antenna feed may thus present some

technical challenges. Under the ACTS program, an operational satellite with

18 fixed beams and 6 scanning beams is envisioned, with beam widths on the

order of 0.3 ° . This should be similar in complexity to the 32 fixed beam

design we envisioned for this FSS system, which would require 0.8 °

beamwidths. Thus, the design although difficult, should be feasible.

The size of the reflectors that will be required to achieve the

0.8 ° beamwidth of our baseline satellite design is 4 ft for the downlink and

3 ft for the uplink. This should be quite feasible, as it is roughly a third

the size of the antennas to be flown on ACTS (11 ft downlink reflector and

7 ft uplink reflector).

7.2.2 Low Noise Receivers

The baseline design assumes a 4 dB noise figure low noise receiver

on the satellite. User terminals have limited EIRP, hence the satellite LNR

performance is critical because it sets the C/N for the backhaul uplink. The

uplink is the limiting factor in the backhaul link performance. Better LNR

performance would provide a direct improvement in the system performance, up

to the limit set by the earth background temperature (about 290°K).

Although the noise figure of a receiver is usually set entirely by

the first stage for conventional designs, this is not the case for millimeter

wave LNRs in that the gain of low noise devices is usually fairly low. Thus,

the noise figure of the overall receiver is determined by the first several

stages of amplification. Noise figure performances are thus a function of the

gain required.

Low noise receiver designs can use a variety of techniques to

maintain a low noise figure; mixer/IF amplifiers, parametric amplifiers, and

low noise FET or HEMT amplifiers.

For mixer/IF amplifier designs, noise figures as low as 2.5 dB are

theoretically possible at 30 GHz, but require cryogenic cooling. Uncooled

designs show noise figures in the 6 to 8 dB range. Mixer/IF amplifier designs

are also difficult to optimize and thus extremely labor intensive, resulting

in high recurring costs as additional satellites are built [AFSC, 1985].

Parametric amplifiers are not generally used for satellite designs

due to the added weight and complexity of the required pumping source.

Paramps can, however, achieve very low noise figures, from 3 dB to as low as

I dB at 30 GHz, depending upon whether they are cooled or not [Frediani,

1979].

FET, and more recently HEMT amplifiers, appear to provide the most

logical choice. Complete receivers with noise figures of as low as 2.0 dB
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appear theoretically possible even with uncooled designs. FET devices have

been demonstrated to have the required reliability and been utilized on a

number of programs. HEMT designs are slightly risky, but have high potential

for demonstrating the required reliabilty and possibly even outperforming FET

designs.

Table 7-2 summarizes the state-of-the-art for recent developments

in low noise receivers and amplifiers at 30 GHz. Devices with noise figures

as low as 2 dB have been demonstrated. Complete receivers with noise figures

as low as 4.6 dB have been demonstrated, with preliminary results indicating

performance as good as 4.0 dB may have been achieved [Sholly, et.al., 1985],

[Santarpia, Bagwell, 1985]. THUS, our requirement for a 4 dB noise figure

receiver should be easily achieved by the mid-1990s timeframe.

7.2.3 Power

The baseline satellite design resulted in a power consumption of

5200 watts. This is significantly greater than any existing satellite as can

be seen in Table 7-3, which shows a summry of part satellite power

requirements. This power requirement does not, however, appear infeasible.

For example, NASA has been studying the concept of large geostationary

communications platforms that could require as much a 7000 to 8000 watts

[Brown, Barberis, 1985]. The platforms would provide an aggregate of services

such as C, Ku, and Ka-band transponders.

The primary impact of this large power requirement is the need for

a large solar array and batteries. ._nis results in a very heavy satellite.

Power dissipation might also be a problem, as the overall efficiency of the

satellite would be fairly low. Tnis area would warrant further study if such

a power hungry satellite design was selected.

The approach of using several smaller, lower power satellites would

thus be quite attractive from the power generation point-of-view. By cutting

the power requirement to 3430 W as suggested in subsection 6.5.3.1, a quite

feasible requirement would be obtained. Using multiple satellites might

result in even lower power requirements per satellite. This would then be

well within demonstrated power generation capabilities.

Further study is needed to determine the tradeoffs involved in

going to multiple satellites versus a single satellite. Advances in other

areas of technology such as the satellite antenna (_oi,_ to non-uniform beam

sizes) or solid state amplifier efficiency could also help reduce the overall

power requirement.

7.2.4 Weight

The estimated on-orbit weight of the satellite required by the

baseline design is approximately 7000 ibs. A summary of previously deployed

geostationary satellites is shown in Table 7-4, from which it can be seen that

this satellite would be considerably heavier than any previously deployed

geosynchronous satellite.

On the other hand, it will probably be possible in the near term to

launch such a satellite. Table 7-5 contains a summary of US current and

future launch capability compiled from [Scherer, 1985] and [Ordahl, et.al.,

1985]. It can be seen that although 7000 Ibs is above the current launch
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Table 7-2

30 GHz LNA/LNR State-of-the-Art

Noise Figure

Devices

7 dB

3 dB

3 dB

2-3 dB

Company

Receivers

8 dB NTT

4.0-4.6 dB Hughes

6.5 dB ITT

6.5 dB LNR

4.0-4.6 dB TRW

Rockwell

Table 7-3

Summary of Past Satellite Power Requirements

Satellite Year Power

INTELSAT-IVA 1975 500 W

INTELSAT-V 1980 1200 W

INTELSAT-VA 1985 1400 W

ACTS .... 1660 W

FLTSAT 1978 1800 W

INTELSAT-IV .... 2100 W

TDRSS 1983 1700 W

HST .... 3800 W
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Table 7-4
Summaryof Past Satellite Weight

Satellite Year

INTELSAT-IVA 1975 1900

FLTSAT 1978 2000

INTELSAT-V 1980 2266

INTELSAT-VA 1985 2266

ACTS .... 2800

TDRSS 1983 3200

INTELSAT-IV .... 4906

Weight (Ibs)

Table 7-5

Summary of US Launch Capability

Present

Vehicle Capacity (ibs)

DELTA 2,800

ATLAS/CENTAUR 5,200

TITAN 34D 4,200

l SHUTTLE/PAM-D 2,750

SHUTTLE/LEASAT 3,100

SHUTTLE/IUS 5,000

Orbit

Transfer

Transfer

Geostationary

Transfer

Geostationary

Geostationary

Future

f ATLAS/CENTAUR

TITAN 3407

SHUTTLE/TOS

SHUTTLE/TOS/AMS

SHUTTLE/TOS/AMS

SHUTTLE/CENTAUR-G

SHUTTLE/CENTAUR-G'

5,800

10,000

13,400

19,500

6,500

10,000

13,200

Transfer

Geostationary

Transfer

Transfer

Geostationary

Geostationary

Geostationary
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capability, several possible launch methods will be available in the near

future, such as the upgraded Titan or Space Shuttle with the Centaur-G

transfer vehicle. It should be noted that these future launch capabilities

are currently under development, and should be available in the next couple of

years.

Although lower weight satellites would result from a multiple

satellite design, more satellites would need to be launched. Tne total weight

that would need to be launched would probably be greater. The cost of

launching the multiple satellites could thus be even greater than this single

satellite design. Due to some uncertainty in the status and availability of

future launch capability, it is not possible at this time to come to a

definite conclusion regarding this tradeoff. Future study should be conducted

to define the satellite payload in more detail.
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SECTION8
PRIVACY AND SECURITY

This section summarizes the issues of privacy and security for the

applications under consideration for the FSS. The requirements for privacy

and security are discussed first, and then specific techniques for addressing

these requirements are identified. Finally, the system impact and cost of the

various techniques are investigated.

8.1 OVERVIEW

Historically, communications links for other than military purposes

have been in the clear, i.e., no special attempts at providing any privacy was

made. This was possible because eavesdropping would require physical access

to the telephone lines and installation of a wire-tap running the risk of

detection. As more communications are provided via microwave and satellite

links, however, eavesdropping has become a passive activity with little risk

of detection.

The use of scrambling and encryption techniques have increased

markedly in the recent past due to concern over the interception of satellite

transmissions. Most notable is the addition of scrambling on satellite video

links used to distribute programming to cable systems. Electronic Funds

Transfer (EFT) systems use encryption schemes to provide both privacy and

authentication for transactions. In addition, introduction of the Data

Encryption Standard (DES) has helped to rapidly increase the use of encryption

on communications links.

Privacy and Security are two separate, although related, issues.

Privacy refers to the confidentiality of the information sent through the

communications network. Privacy is desired by the users of the system to

protect their confidential information, and is necessary to protect informa-

tion, such as account numbers, vital to the security of the system. Security,

on the other hand, refers to the integrity of the system, i.e., its resistance

to the injection of false messages, use of resources without proper authoriza-

tion, or compromise of the privacy of the system by breaking the codes used

for encryption.

Providing both privacy and security is necessary to a varyi_1_

degree for each of the potential applications of the FSS investigated by this

study. Both application specific requirements and system-wide requirements

are addressed in the following paragraphs.

8.2 SYSTEM SECURITY

First we consider the fairly general system-wide security issues.

There are a number of considerations in the design of the system with respect

to the overall security.

It is desired to protect both the communications channels and the

command/telemetry channels of the satellite. Protection of the command/tele-

metry channels of military satellites is standard practice, but has not been

done for commercial satellites until fairly recently [Sood, 1984]. Current

trends, however, are to provide increasing security with respect to satellite

channelg.
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The command/telemetry channels are usually protected by encrypting

the command channel. Only the authorized control station has the key. These

techniques are fairly well developed for military satellites, and are now also

being used for commercial payloads.

The security of the communications channels presents a more

interesting problem, and raises some new issues in the context of an inter-

active FSS system where there are very large numbers of users.

The potential problems result from the existence of such a large

community of users. It may be possible for users to "pirate" satellite time

by using the satellite channels for private, unauthorized communnications. As

the number of users increases and the required equipment becomes widely

available, the potential for pirating increases. With a large number of users

of the system, tracking down an individual signal would be difficult. We can

envision the selling of illegal "black boxes" that would convert the normal

terminals into a "pirate" terminal, allowing free long distance communication

between terminals without paying for the channel.

This is currently not a problem with satellite communications

systems due to the fairly small number of users and relative sophistication

required; unauthorized users are fairly easy to detect and track down.

It would be desirable to design the system in a way that would

preclude this sort of activity. One extreme approach, applicable to a

processing TDMA satellie, would require each user to request transmission time

from the satellite. The satellie would verify the user's identity, and only

grant transmission time to those users who were authorized. By repeating only

authorized transmissions, unauthorized users would be prevented from using the

satellite. Such an approach, however, could be prohibitively expensive.

As less complicated access schemes are used, it becomes easier for

unauthorized terminals to gain access to the satellite. However, complicated

access schemes alone do not solve the problem completely. For example, in a

DA/TDMA system, a pirate could still achieve a reasonable throughput provided

there were some unused slots in the network. The pirate would not need to

conform to the access scheme but could utilize empty slots by transmitting

randomly, repeating his message until it got through. In this case, the

control processing required in the pirate is simpler than that of the author-

ized terminals.

Another related concern is intentional interference. Recent events

have shown the need for increasing the security of satellite links [Doherty,

1986], [Newsweek, 1986]. Unfortunately, there is little that can be done to

protect satellite channels from either unintentional or intentional interfer-

ence, or from a determined pirate. Techniques used for military communica-

tions usually resort to spread-spectrum techniques that are applicable to a

single channel satellite. These techniques, in addition to being prohibitive-

ly expensive, are not easily applied to a multi-channel satellie.

A final requirement of system security is to ensure that valid

messages are delivered. It should be impossible for an interferer to change

the content of messages or to inject forged messages into the system.

When addressing possible solutions to these problems, the cost-

benefit tradeoff must also be considered. Using a processing satellite simply
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to eliminate unauthorized users is probably not worth the investment. As some
of these issues are new and unique to this type of satellite system, new
solutions mayneed to be developed.

One partial solution is to provide security at the provider end of
the link. The identity of the user must be verified before any services will

be provided via the network. Possible means for identifying the user identfty

include passwords, and digital signatures. (User and message verification is

discussed in subsection 8.4).

This solution does not eliminate a direct user-user connection

between two unauthorized users. Currently the most economical solution to

this problem appears to be a concerted detection and prosecution effort by the

various service providers early in the development of the system. By making

an example of the first offenders, future pirates should effectively be

discouraged.

8.3 SYSTEM PRIVACY

A number of privacy issues also exist with respect to the FSS

system design. Although the basic privacy issues have long been a subject of

attention, for the particular applications under consideration by this study

some new and unique problems result.

The privacy issues can be divided into three parts: the privacy

problem, preventing the interception of information on the channel; the user

authentication problem, verifying the source of _e messaqe; and the message

authentication problem, verifying the accuracy of the message. The solutions

to these various problems are interrelated and make use of common crypto-

graphic tecniques.

8.3.1 Privacy Requirement

The types of information being sent back and forth in many of the

applications (i.e., home banking, home shopping) are not particularly sensi-

tive. Even if it were possible to eavesdrop on someone conducting trans-

actions via the system, there is little motivation for third praties to do so,

as there is no financial gain likely. (This would not be true for business

users of such a system). Users would most certainly object, however, if it

amount of privacy needs to be provided by the system.

The types of transactions in the system are from many different

individual users to a centralized hub. Encrypting all the traffic with a

single key is not adequate, as it is also desired to keep users from being

able to receive each other's messages. Hence, each user-hub link must have

its own set of keys.

This results in an astronomical key distribution problem, especial-

ly when there may be several different hubs serving millions of users. Each

of the hubs would be required to keep track of millions of keys. As each

transmission is received, the hub would be required to look up the correct key

to decode the transmission. One solution to this problem is the use of public

key systems.
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8.3.2 Public Key Systems

Public key systems (PKS) were first suggested in the late 1970s

[Diffie, 1976], [Merkle, 1978]. In a public key system, the enciphering and

deciphering processes are split. The enciphering process maps a message into

a new message, which has no obvious relationship to the original message.

This process can be represented,

c = Ek(D)

where C,D,E {M} where {M} is the set of all possible messages (for example

n-bit vectors). D is the clear-text and C is the resulting cipher-text. E k

is the encryption algorithm.

The deciphering process is thus,

5 = Dk(C)

where D k is the decryption algorithm. Obviously, D k _ust be the inverse of E
in order to recover the original message text (i.e., D = D).

A public key system can be built when {Dk} and {E k} satisfy the

following properties:

(I) D k is computationly infeasible to compute from Ek for all k.

(2) Dk(M) and Ek(M) are easy to compute for all M.

(3) A D k and _ pair are easy to generate from k for all k.

Thus, to select a key, a user picks some k randomly, and generates

D k, and E k. D k is kept private (we will refer to it as the private key) and

E k (the public key) is released publicly. Property (I) ensures the privacy of

the private key, since releasing E k does not compromise the security of Dk-

The {k} must be fairly large (i.e., there are many non-equivalent

Dk{0E k pairs) in order to preclude an exhaustive key search. A {k} of size
is probably quite adequate.

It should be noted that the selection of k must be truly random, or

a potential weakness exists. A would-be interceptor would normally be faced

possible keys. If, however, some information about k can be obtained, the

size of this search could be reduced proportionally.

The system is secure because of the one-way nature of Ek. Although

all users can generate encrypted traffic using Ek, only the owner of private

key D k can decrypt that traffic.

Several possible sets of {Ek} and {Dk} have been suggested;

[Rivest, 1978], [Merkle, 1978a], and [McEliece, 1978] all propose public key

systems using particular classes of functions.

The RSA algorithm [Rivest, 1978], uses a set {E k} where the

encryption algorithm is

C = E(M) = M e modulo n
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where Mc {0, I, ... n-l} and (n,e) is the public key.

is

M = (C) = Cd modulo n

The decryption process

using the private key (n,d).

The generation of d and e, and the selection of n are rather

complicated. The security of the system lies in the fact that n is selected

as the product of two relatively large primes p and q, such that

n = p • q.

The factors p and q are kept private. From p and q it is fairly straightfor-

ward to compute e and d. However, knowing just n and e makes computing d very

difficult.

8.3.3 Application of PKS to FSS

The PKS would be applied to the FSS system in the following

manner. Each of the main hubs would have its own key, for which the encryp-

tion key is released publicly, allowing all terminals to communicate directly

with the main hub. Likewise, each user has their own key for which the

encryption key is released publicly and the decryption key is held privately.

Backhaul communications going into the hub can be encrypted by

anyone using the hub's private key, but can only be decrypted by the hub. For

forward link transmissions going outbound from the hub, the hub encrypts the

transmissions for each user with that particular user's key, thus ensuring

that only that user can decrypt the message. Figure 8-I illustrates such a

network.

Electronic mail needs to be handled differently, as it is an

application where the information is sent from one user to another, rather

than being sent between a user and a central node.

The electronic mail problem can also be satisfied within the public

key system, and in fact this is the only practical way to solve the problem

and ensure complete privacy to the two users.

The basic problem is this: the two users exchanging the electronic

mail need to be able to decode traffic without any other user being able to

listen in. Hence, it is not possible for a third party to distribute keys to

the two users without compromising the security of the link. With convention-

al cryptographic systems, it would thus be necessary for one of the users to

send a key via some outside secure channel to the other user (i.e., via

registered mail). This would thus result in the necessity of preparing for

the link some time in advance, a considerable inconvenience, and may make

little sense. (Given that one must send the key via this other channel, one

could just send the entire message and be done with it!).

The problem is solved by using public keys in the following

manner. A user wishing to send electronic mail to another user first esta-

blishes a connection with a service provider that provides the electronic mail

forwarding service. The user then requests the public key for the destination
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of the message from the service provider. The user then encrypts the entire

message (except for the routing instructions) using the key of the recipient

rather than the hub, and transmits the message to the hub for relay. The hub

can then relay the message to the user (provided the address is unencryp-

ted! ). Since the message has been encrypted with the recipient's key, only

the desired recipient can decipher the message. This process is illustrated

in Figure 8-2.

8.4 USER AUTHENTICATION

A serious issue still exists with respect to the authentication of

users of the system. Clearly, it is necessary to restrict access to informa-

tion to those who have paid for the service. For applications such as home

banking, some means of verifying that it is the account owner on the other end

of the link is necessary, (e.g., a digital signature). For applications such

as home shopping or reservation making, it is necessary to ensure the validity

of orders, and to be able to bill the correct person. Obviously, it should

not be possible for an eavesdropper to obtain the necessary information in

order to appear to be a valid user of the system.

The user authentication requirements are even stricter than the

privacy requirements. This is because failure of the user authentication

could have dire consequences. The user authentication is analagous to the

signature on a check; if it possible to forge this signature, one could

masquerade as the user. Such an imposter could then access services at no

cost to himself, and even possibly steal money (i.e., by transferring money

electronically) from the legitimate user's on-line accounts.

Some form of digital signature is necessary. By the very digital

nature of the system, such a concept appears impossible; any bit pattern can

be reproduced identically by anyone. There is a solution, however, provided

by public key systems. This is possible provided that the public key system

also has the property that the encryption algorithm Ek is an inverse of the

decryption algorithm D k. (Remember, we previously only required D k to be an

inverse of Ek, but not vice-versa). Thus, messages "encrypted" with the

private decryption key algorithm can be "decrypted" with the public encryption

key. To sign a message, the sender encrypts all or a portion of the text

using his private key. Anyone can recover the original text by decrypting the

J,,c_ u_x**9 that user's public _. Th_ ...._=_--_ _.._=_ f_., _^ _

that only the person with the private key matching that public key could have

encrypted the message such that the original recognizable text could be

recovered by using the public key. Because the public keys and their owners

ae a matter of public record, it is a simple matter to verify the identity of

the user.

This user authentication scheme also solves the problem of dispute

where it is desired to establish legal proof of the sender's identify. The

various applications providers can require requests from users to be signed

with this digital signature. The service providers can then retain audit logs

of the received transaction requests which include the (undecoded) digital

signatures. These logs could then serve as legal evidence.

It is important that the "signed" portion of the message (the

portion encrypted with the private key) be integral to the message or time-
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tagged in order to prevent a would-be imposter, or even the hub, from merely

copying the signature block and then appending it to his own messages. A

standard format for the use of an RSA public key system with signatures has

recently been suggested [Zimmerman, 1986].

Another important aspect is that the public data base of keys be

protected such that unauthorized persons cannot modify the data base. Since

the data base would naturally be maintained by one of the providers, this

should not represent any difficulty.

8.5 MESSAGE AUTHENTICATION

A final issue closely related to the user authentication problem is

the message authentication problem. It is necessary to ensure not only that

the message was sent by a particular user, but that the contents of the

message have not been altered either accidentally (channel errors) or inten-

tionally (interferer). It may also be desired to establish legal proof that

the sender sent the particular message (i.e., requested a particular trans-

action).

For example, consider a stock transaction executed via the sys-

tem. If there was no message authentication, two potential scenarios could

develop. In the first scenario, suppose an investor requested the purchase of

100 shares of stock which, due to transmission errors, was executed as a

purchase of 900 shares. In the event that the stock lost value, the investor

could consider the system operator liable for any loss due to the error. Tne

second scenario is similar, but our hypothetical investor requests the pur-

chase of 500 shares of stock. It later turns out that this was a bad decision

on his part; the investor could claim that he had requested the purchase of

100 shares, and that the system made an error. Providing a message authenti-

cation component to the system would alleviate these potential scenarios.

Addinq a simple checksum to the message will solve the problem of

accidental channel errors, but will not solve the problem of an intentional

interferer. Random channel errors will be caught when the checksum fails to

match. An intentional saboteur could, however, change the data in the message

and change the checksum to match, thus escaping detection.

The would be saboteur can be defeated provided that the text of the

message and checksum are encrypted. Good encryption algorithms have the

property that a change in a single bit of clear text results in many bits of

the ciphertext changing (and vice-versa). Thus, to successfully modify a

transmitted message (i.e., have it still pass checksum) becomes equivalent to

the problem of determining the deciphering key. This does not, however, solve

the problem of dispute, as the transmitter can always claim that errors were

introduced after the decryption process.

To solve the problem of dispute, we thus require not only the users

to "sign" the message as described in the previous section, but to include a

message digest (a hashed version of the message, similar to a checksum) in the

signature. The verification process is then as follows: The message is

decrypted by the receiver using the receiver's private key. The signature is

then decrypted using the public key of the transmitter. The successful

decryption of the signature verifies the transmitter identity. The signature

contains the message digest. The message digest is computed from the message
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text and comparedto the signature. If the two match, then the content of the
messageis validated. \

A potential vulnerability exists if a poor hashing function is
selected for generating the message digest. A receiver could search for
another messagethat has the samechecksumand substitute it for the actual
message. This problem is solved by selecting a hashing functon that 1) is
essentially one way (like the basic encryption/decryption algorithms), and
2) results in a sufficiently large messagedigest that an exhaustive search
for messageswith the same digest is infeasible. Messagedigests of 56 bits
are probably more than adequate.

Note that the requirements for a good hashing function are compat-
ible with good error detection capability. Obviously, if changing a few bits
in the messagetext could yield the samemessagedigest, the messagedigest
would be of little value. Thus, the message digest can serve the dual
function of validation and error detection.

8.6 IMPLEMENTATIONCONSIDERATIONS

Unfortunately, little use of the public key technology has been
made in operational systems. Consequently, little hardware specialized for
the encryption/decryption of data exists. Due to the fairly extensive
computations required, however, software implementations are usually quite
slow. The maximumachievable data rate for a software implementation maybe
too low for the applications of this system.

The Data Encryption Standard (DES), however, does not pose this
implementation problem. The DESis a standard =,,__.,/_y_,._^-'A...... _^, system
utilizing 56 bit keys [FIPS, 1977]. A number of integrated cricuits are
available which provide encryption/decryption functions in a compact package,
at data rates well in excess of that required for the FSS applications.
However, because the DESis a conventional cryptographic technique, it does
not solve the authentication or key distribution problems previously dis-
cussed.

One possible approach would be to use a hybrid of DES and PKS
technology. The PKScould be used to securely distribute DESkeys and provide
the required user authentication at the beginning of a transaction session.
Once DES keys are distributed and the user authenticated, the fast DES
algorithm could be used for encryption of the subsequent transactions.

This is a rather cumbersomeapproach, however, and would complicate
the design of the terminal. A far more preferable approach would be the
development of LSI circuits that would perform the PKSalgorithms, analogous
to the currently available DES chips. We believe the development of such
chips to be likely in the near future if use of the PKS technology becomes
widespread.

As the cost of custom IC's continues to drop, it may eventually
becomefeasible for a would--be service provider to procure a custom chip for
this purpose. The cost of the custom chip development could be spread out
over the millions of terminals built for the system. There might also be
potential to market such a chip directly, especially if standards for the use
of PKScould be agreed upon.
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A software encryption/decryption scheme might be feasible if only

portions of the data sent across the links are encrypted. Sensitive portions

of the messages (i.e., account numbers, balances, order quantities, etc.)

would be encrypted, while other portions of the text would not. Tnis would

thus reduce the processing load since only a portion of each message would

need to be encrypted/decrypted. This is somewhat cumbersome, as it requires

the encryption/decryption processing to know how messages are structured in

order to protect the correct information. _ne hardware encryption/decryption

scheme described above would appear more desirable.
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SECTION 9

SUBSCRIBER BASE

This section presents information on the various markets for and

potential subscribers to home banking, financial and shopping services de-

livered through electronic media such as direct broadcast satellite links.

The purpose was to develop a basis from which to estimate the size of the sub-

scriber base as a function of key market, technology, business and cost vari-

ables.

9.1 MARKET STUDY OBJECTIVES

In order to develop an estimate of the number of potential subscri-

bers from the consumer marketplace for electronic information services trans-

mitted directly through satellite links, an analysis of several different but

complementary markets was conducted. The markets specifically examined were:

I) Consumer Electronics; 2) Home Banking and Financial Services; and 3) Home

Shopping Services. The subsegments of the markets served by satellite links

shall be referred to as the "direct-to-subscriber" or D-T-S segment throughout

the remainder of this section. All were reviewed for their current size and

maturity, growth potential, timeframe in which the growth is expected to oc-

cur, competitive business strategies, service technology requirements, and

penetration potential by D-T-S based services.

The focus of the analysis of the Consumer Electronics markets was

on the following product segments: I) personal/home computers; 2) modems;

3) direct-broadcast satellite (DBS) antennas; and 4) TV monitors with an em-

phasis on high definition digital televisions (HDD TVs). The rationale behind

selecting these product categories was that, collectively, they presently are

and will probably continue to be for the foreseeable future, the primary

communication links through which consumers would gain access to satellite

based electronic information products and services offered by the Home

Banking/Financial and Home Shopping Service providers. Figure 9-I illustrates

the zei_tionships between the service providers, consumer electronic products

and competing access channels, and the service subscribers.
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Figure 9-1
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Home Banking/Financial Services are defined to be the services that

enable consumers to electronically transfer, balance, debit, manage and invest

funds in their private accounts from their homes or other convenient loca-

tions. For the purposes of this analysis, banking services are considered to

be distinct and different from financial services; and because of various fed-

eral and state regulations, are provided by different types of businesses.

Home Banking Services are designed to enable consumers to balance, debit or

credit funds in a their personal accounts.

Based upon today's regulations, these services are provided primar-

ily Dy banks and savings and loan institutions. Financial services, however,

are oriented toward managing and investing account funds. These services are

provided primarily by brokerage, investment and credit firms, credit card com-

panies, and even retailers.

Home Shopping Services are the category of services that enable

consumers to purchase goods and services from their homes or other convenient

location other than a retail outlet. Presently, the primary channels of dis-

tribution for these services are through product catalogues, and broadcast or

cable TV programs. The three major providers of these services are retailers,

catalogue/discount showrooms, and television programmers.
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9.2 METHODOLOGY

In order to achieve the objectives of this study, trend and content
analysis were used to: I) estimate the overall numberof potential subscri-
bers for each major market segment (i.e. HomeBanking, HomeFinancial Ser-
vices, and HomeShopping Services); 2) calculate the probability of achieving
each of the estimates by the mid-1990's timeframe based upon several key in-
terdependent variables; 3) estimate the maximumnumberof subscribers in each
of the major markets that could be served by D-T-S services; and 4) develop a
more realistic weighted estimate of the penetration potential by D-T-S ser-
vices in terms of the numberof subscribers.

A basic assumption in this methodology is that in order for a vi-
able D-T-S market to exist for any of the services, the probability and poten-
tial for success of any of the major market segments would have to be high.
However, success for any of the services would not necessary translate into
success for the D-T-S market segment.

The data and other background information used to determine the
estimates of market size potential were acquired from available industry mar-
ket reports, trade and professional associations and publications, personal

contacts and interviews, and the proprietary databases and knowledge of the

contractor.

The probability of achieving those levels of market growth were

developed for each of the home services examined. The probability estimates

were based upon several interdependent market, business and technology cri-

teria, weighting factors, and assumptions which are used by industry analysts

as accepted indicators of the potential for success or failure of a selected

product or service in the marketplace.

mary.

The criteria and rationale used are described in the following sum-

CRITERIA/RATIONALE FOR

DETERMINING THE PROBABILITY OF MARKET SUCCESS

I. MARKET SEGMENT STATUS & PROJECTIONS

a. Overall Subscriber Growth Rate - This is a key indicator of the vi-

ability of the market segment. A growth rate of 20% per year is

considered to be necessary to generate sufficient revenues and in-

centives by businesses to invest in the development of additional or

niche market services. Rates below this level become less attrac-

tive and more difficult to penetrate.

(cont' d )
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CRITERIA/RATIONALEFOR
DETERMININGTHEPROBABILITYOFMARKETSUCCESS

(cont' d)

b. Overall Growth Timeframe - From the perspective and requirements of

the developers of Ka band satellites, the growth rates described

above should be achieved within the mid-1990 timeframe. If they are

achieved earlier, the impetus to expedite the development of this

technology becomes greater; if achievement is not possible or pos-

sible in a later timeframe, the urgency is reduced.

c. Geographic Distribution of Subscribers - Also from the perspective

of the developers of Ka band satellites, the more geographically

dispersed the subscriber base is, the more attractive D-T-S satel-

lite links become to businesses to provide its home services.

Therefore, the greater the dispersion, the higher the probability

that satellite links will be used. Conversely, the more clustered

the subscriber base, the less attractive that technology becomes.

2. BUSINESS DEVELOPMENT

a. Competing Business Development Strategies - If businesses are al-

ready actively developing and trying to implement strategies to of-

fer home services using information technologies and other electron-

ic media, then the probability of achieving success in the mid-

1990's timeframe is higher than if they are deciding to defer action

until the late 1980's. This is because any major new consumer pro-

duct or service that requires a change in consumer buying behavior

as well as an infrastructure to support its use requires at least 5

- 10 years to fully and properly commercialize.

b. Strong Competitors to Serve Markets - The type of home services de-

scribed in this study will require substantial long-term commitments

from businessnes in terms of financial, marketing and technological

resources. Unless there are major commitments from strong competi-

tors, the probability of success will be low. Conversely, the lar-

ger the number of major corporations that are involved in trying to

commercialize these home services, the higher the probability of

success.

(cont'd)
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CRITERIA/RATIONALEFOR
DETERMININGTHE PROBABILITY OF MARKET SUCCESS

(cont' d)

3. TECHNOLOGY REQUIREMENTS

a. Commercial Availability - Although the basic information technol-

ogies exist to provide the first generation of home services, sev-

eral new technologies need to be developed, including Ka band satel-

lites. If these technologies do not or can not become commercially

available within the mid-1990's timeframe, then the probability of

achieving the subscriber growth goals will decline.

b. Competing Technologies - The primary ground and satellite based

communications technologies that Ka band satellites will be com-

peting against to link home service providers with subscribers are

T1, microwave, C and Ku band satellites. The capacity of these

technologies to support the transmission requirements of providers

in the mid-1990 timeframe is expected to be more than adequate. In

order for Ka band to be an attractive alternative, it will not only

have to be cost competitive but demonstrate that its use will enable

service providers to gain better access to existing markets or serve

as a means for developing new ones. However, as was stated in (3a),

the availability of competing technologies will serve to strengthen

rather than impede the development of the home services markets,

and, therefore, the opportunities of Ka based applications.

Weighting Factors on a scale of 0 - 1.0 were used to determine how

close to achieving the requirements of each criterion the marketplace will

come in the mid-1990's timeframe. The Weighting Factors for each criterion

are summarized in the following chart.
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WEIGHTINGFACTORS
CRITERION 0 .I .2 .3 .4 .5 .6 .7 .8 .9 1.0

la. Overall subcriber
growth rate

lb. Overall growth

timeframe

Ic. Geographic dis-

tribution

2a. Competing busi-

ness development

strategies

2b. Strong competi-

tors to serve

markets

3a. Commercial

availability

(Ka satellites)

5% 1 0% 20%

Beyond 2000 Late 1990's Mid 1990's

Local Regional National

Few Some Many

Few Some Many

None Some A11

Some All3b. Competing technologies None

The estimate of the maximum size of the subsegment of each market

that could be served by D-T-S services was based upon the assumption that it

would be equal to the total number of DBS antennas in the marketplace. How-

ever, a more realistic estimate of the market penetration potential was based

upon the assumptions that only a small percentage of the installed base of DBS

antennas as well as the associated consumer electronic products would be used

for D-T-S subscriber services.

Finally, after these subsegment estimates were developed, each D-T-

S opportunity was ranked in priority order in terms of their probability of

success as well as potential number of subscribers. An opportunity was ranked

"High" if its probability estimate was in the .6 - 1 range; "Moderate" if it

fell within .3 - .5; "Low" if it was in within .1 - .2; and "Reject" if its

value was less than .1.

MARKET SEGMENT OVERVIEW - CONSUMER ELECTRONICS

Market Status and Projections

In general, the consumer electronics marketplace has been undergo-

ing dramatic changes since the mid 1970's in terms of growth and product en-

tries. The industry was once considered a haven for officianados of gadgets.

It has rapidly changed its orientation toward home and portable entertainment
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products, and is expected to evolve toward a "lifestyle" emphasis by the early
1990's. A "lifestyle" emphasis in products is defined to mean systems that
combine design and function to provide entertainment as well as perform busi-
ness and operational functions such as controlling home security systems and
conduct homebanking services.

The consumer electronics industry sold $5.2 billion worth of pro-
ducts in 1975. Sales increased sharply to $23.4 billion in 1984 and $35 bil-
lion in 1985. More than two-thirds of these sales were generated from pro-
ducts that did not even exist in 1975, most notably personal/home computers,
large screen TVs, video cassette recorders, and compactdisk players. Because
of advances in semiconductor and VLSI (very large scale integrated) chip tech-
nologies, even more sophisticated, easy-to-use, multi-functional products will
be introduced that could revolutionize the way consumers incorporate electron-
ics into their lifestyles. These developments could propel sales to the $60
billion level by the mid-1990's.

The potential for using these products for homebanking, financial
and shopping services is high because they would fit into the "lifestyle" ap-
plications viewed by industry analysts as the next major shift in utilization
emphasis. On the forefront of this trend are households defined by market
reasearchers as "Technologically AdvancedFamilies" (TAFs). The characteris-
tics of TAFs are that they are willing to spend larger than average sums on
technologically advanced products to perform functions that will save them
time or offer convenience as well as provide entertainment value. In essence,
they are seeking function as well as design in their products. Today, there
are an estimated 9.2 million TAF households. This segment of the consumer
marketplace could serve as the core of early adopters for electronic home
services in the 1990's.

This study focused on four product categories as the basis for de-
termining whether or not an adequate infrastructure to support and utilize
electronic home services would be in place by the early to mid-1990's. The

rect Broadcast Satellite (DBS) antennas; and 4) High Definition Digital TVs
(HDDTVs). These specific product categories were selected because today's
version of home banking, financial and shopping services are currently de-
signed for access through PCs, telephones, 300-1200 baud modems,or broadcast
and cable TV programs. It is also anticipated, that the services provided in
the mid-1990's will continue to rely heavily upon these access channels.
These relationships are depicted in Figure 9-2.
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Figure 9-2
* HomeService Access Channels *

via Selected ConsumerElectronic Products

I HomeBanking L

_ Telephone H Modem I PC 1

I HomeFinancial_/_ ] _

9.3.2 Description of Product Categories

Personal/Home Computers & Modems

PCs are defined to be micro-computers selling in today's market for

between $500 and $2,500 and used primarily in the home. However, because of

R_linlng n_e _.A _nnr_e_A fnnrFi_nali#v aria oanahiliev, eh_ _iR_in_#inn

between a home and an office based product is becoming blurred. Notwith-

standing, the configuration and functionality of PCs are expected to change

from its present stand-alone design to be integrated with other product

categories such as home monitoring, security and entertainment systems with

large screen TV monitors.

Modems are simply devices that enable PCs to interactively communi-

cate, primarily in ASCII protocol, via telephone or other communications in-

terface with another party. Although the basic function of modems will remain

essentially the same through the mid-1990's, their transmission speeds will

continue to increase and a greater percentage will be internal rather than

stand-alone units. In 1983, most of the modems sold were designed to transmit

at either the 300 or 1,200 baud rate. The design rate for most modems in the

late 1980's will be 2,400 baud, and even higher by the mid-1990's.
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Direct Broadcast Satellite Antennas

Today's generation of DBS antennas are simply parabolic dish anten-

nas designed to receive broadcasts in either C or Ku bands. Consumer versions

are approximately 5 ft. (1.5 m) to 10 ft. (3.0 m) meters in diameter. Cur-

rently, 70% of all installations are in rural locations; 29% in suburban

locations; and only I% in urban areas. In the future, however, flat phased

array antenna designs could be developed and installed in places where the

conventional dish antennas would violate zoning ordances or esthetic con-

siderations.

High Density Digital Televisions (HDD TV)

Although still in the developmental stages, HDD TVs are expected to

have a significant impact on the next generation of TV buyers. Not only will

picture clarity be dramatically improved, but HDD TVs will also have the cap-

ability to serve as a 2-way home communications hub for audio, video and vi-

deotext programming, as well as perform computerized home monitoring func-

tions.

Specifically, HDD TV's technological features will be able to

scramble, enhance, and compress transmitted signals. These features will en-

able consumers to see multiple images on a split or freeze-frame basis as well

as simultaneously process signals from regular TV stations, videotext services

and computers. Beyond home entertainment, security and other monitoring func-

tions, these capabilities could serve as the access channel through which pro-

viders of home banking, financing and shopping services are obtained.

Picture clarity improvements will be achieved through projected

images composed of 1,125 horizontal scan lines rather than today's 338 scan

line rate. Home catalogue shopping services could take particular advantage

of this advance.

The major disadvantages of HDD TV technology in terms of its appli-

cation to these home services, however, is that they not only need high band-

widths in the 20 to 30 MHz range, but the equipment that will be needed by

broadcasters to transmit these signals will have to be specially designed.

Thus, the conversion costs to provide programming via HDD TVs could be too

high for businesses to invest for several years to come.

9.3.3 Major Product Providers

The major vendors of PCs are listed in Table 9-I.
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Table 9-I
* Major PCVendors *

1985

Rank Vendor Sales or % MarketShare

(1985)

I IBM 29.6%

2 Apple 16.5

3 Commodore 14.4

4 Tandy 7.4

5 Atari 5.5

6 Compaq 3.6

7 AT&T 3.1

8 Hewlett-Packard 2.3

9 Zenith 1.7

10 Wang 1.3

11 All others 14.6

U.S. Total I00.0%

Source: Sales & Marketing Management, April 1986

The major vendors of modems are listed in Table 9-2.

Rank Vendor

Table 9-2

* Major Modem Vendors *

1984

Sales or % Market Share

Hayes 35%

Novation 18

U. S. Robotics 10

All others 37

(approx. 40 other vendors)

Source: Electronics Business, April I, 1985
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The major developers of HDDTVs are listed in Table 9-3.

Table 9-3
* Major HDDTV Developers *

1986

Rank

NA

Vendor

ITT

Sony

Panasonic

Matsushita

Toshiba

Grundig

RCA

Zenith Radio Corp.

Sales or % Market Share

Product still under de-

velopment. Product in-

troduction in U.S. an-

ticipated for late 1987.

Source: Popular Science, January 1987.

9.3.4 Estimated Product Sales

The actual and estimated sales volume for each of these product

categories are summarized in Table 9-4.

PRODUCT

Table 9-4

* Product Sales *

UNIT SALES/YR. ESTM. ANNUAL TOTAL ESTM.

(millions) SALES GROWTH INSTALLED

!985 !995 PER Y_.R BASE

(Actual) (Estm.) (%) (by 1995)

PCs

Modems

DBS Anten.

HDD TV

13.0 37.00 11 55 million

1.3 12.00 36 25 million

0.65 4.00 20 6.7 million

N.A. 0.35 *25 1.3 million

* Based on estimated sales beginning in 1990.

Source: "Consumer Electronics U.S. Sales," Electronic

Industries Association, October 1986
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The unit sales per year figures are based upon actual sales in 1985

and estimated sales volumes in the 1995 timeframe by industry analysts. Al-

though these figures are for the various product categories as whole, it is

worth noting that the eventual segmentation of the DBS antenna marketplace

will have a greater impact on the development of the D-T-S Ka band based ser-

vice marketplace than for PCs, modems, and HDD TVs.

Virtually all of the 1985 DBS antenna sales were for designs to re-

ceive C band transmissions, primarily cable TV feeds. By 1995, the product

mix is expected to include designs to receive C, Ku and some Ka band

transmissions as well. The researchers for this section of this study have

assumed for the purposes of the remainder of this report that approximately

25% of the DBS antennas market in 1995, will be for Ka band designs. This

estimate was based upon the assumption that by 1995 Ka satellite availability

will have only achieved limited commercial availability; and, as a

consequence, will have served to generate only a moderate response from home

service providers to transmit there services through Ka links.

The total estimated installed base of products is defined as the

probable number of units actively being used in households. These estimates

were based upon the assumptions that each product unit will have a three year

life-cycle and that on an on-going basis, many will be replaced, and some up-

graded or simply discarded without being replaced. Therefore, the installed

base is not the sum of the units sales over the growth period, but a smaller

amount. The estimates presented in Table 9-4 are based upon the opinions of

industry analysts as well as the researchers of this section of this report.

9.4 MARKET SEGMENT OVERVIEW - HOME BANKING/FINANCIAL SERVICES

9.4.1 Market Status and Projections

Home Banking

Although packaged under a variety of names, virtually all electron-

ically based home banking services are designed to enable consumers to gain

access to their checking and savings accounts for the purpose of transferring,

depositing, crediting, debiting or balancing funds without the use of paper

checks. In some instances, purchases of financial instruments such as money

market certificates and certificates of deposit are possible. And although

many of these services are marketed under the umbrella of "home" banking ser-

vices, they are in fact accessable through some form of terminal/CPU link lo-

cated at banking, retailing and other public locations.

The underlying motivations of banks for providing these services

are to reduce their operating costs and, because of competition resulting from

deregulation, to increase and broaden their customer bases. In 1985, the vol-

ume of personal check transactions processed exceeded 35 billion. By the mid-

1990's, approximately 90 million households will have checking accounts and
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the transaction volume is expected to surpass 62 billion personal checks. The
average cost, in 1986 dollars, to process a check ranges from $0.50 - $1.00.
Various electronic methods for processing equivalent transactions, such as
automated teller machines (ATMs) costs between $0.35 - 0.50. In the past, most
if not all of the processing costs were passed along to the consumer either
directly on a fee-per-check basis, monthly service charges or minimumbalance
requirements. Today, however, with the growing competition facing all banks
and savings and loan institutions for customers, it is becoming increasingly
difficult to either pass along or absorb these costs and maintain one's com-
petitive advantage.

Recent marketing studies estimate that by the mid-1990's between
20-30 million of the 90 million households will be utilizing some form of
electronic home information system to perform banking, shopping, budgeting,
ticketing and homesecurity monitoring functions. Assuming that these house-
holds represent approximately 14 - 20 billion of the overall transactions, the
savings in bank operating costs, and fees that can be earned from additional
home banking services could amount to more than $10 billion in revenues per
year and serve as the major incentives for moving ahead and implementing ser-
vices based upon these systems.

Financial Services

The major products and services offered by the financial services

industry are designed to facilitate the purchasing, selling and managing of

stock, bonds and related investment packages as well as the purchasing of

goods and services via credit cards. Like the home banking services, they are

packaged and marketed under a variety of trade names, and are accessible

through a variety of electronic media. Since this industry is governed by

rules and regulations which are different and, until recently, less restric-

tive than those of the banking industry, the number and type of businesses

that can offer these services is greater. For example, the participants in

this industry range from traditional stock brokerage firms such as Merrill

Lynch to major retailers such as Sears Roebuck and Company.

However, because of recent rulings, the banks may eventually have

more latitude to offer the same type of services. Under the National Bank Act

and interpretive rulings of the Comptroller of the Currency, national banks

are now permitted to offer banking, financial and economic products and in-

formation to subscribers; perform data processing activities in connection

with banking, financial, and economic data; perform payments processing and

financial record keeping for subscribers, packagers and service providers; and

execute funds transfers between various parties. Additionally, with respect

to bank holding companies, the Federal Reserve Board in recent amendments to

Regulation Y (which implements the Bank Holding Company Act) determined that

home banking activities and data processing for financial data are "closely

related to banking" and thus permissible activities.
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In somecases, these rulings have enabled banks and financial in-
stitutions to engage in joint ventures such as the relationship between Citi-
bank and VISA. If these ventures continue to prove profitable, then the trend
is expected to continue as well as expand into the future. The net result
will be that there may be no discernable difference to the consumer between
the homeservices being provided by the two types of institutions.

To a large degree, the providers of financial services compete for
the same customers being pursued by the home banking industry. This is not
surprising since the fees earned for financial services exceed $6 billion per
year by serving over 40 million investors, virtually all of whomrequire bank-
ing services as well.

9.4.2 Description of Major HomeBanking/Financial Services

Despite the packaging and promotional campaigns, today's HomeBank-
ing and Financial Services fall into one or a combination of the following
three categories: I) checking account management;2) debit and credit card
transactions; and 3) investment and portfolio account management.

Checking Account Management

This service simply enables consumers to access their checking ac-

counts via telephone or PC to determine balances, pay bills, write checks and

transfer funds into other accounts.

Debit and Credit Card Transactions

These services enable consumers to simultaneously purchase goods

and services or obtain cash, and directly debit their accounts for payment.

The transactions may be conducted via private telephones, Automated Teller

Machines (ATM's), or Point-of-Sale (P0S) terminals.

Investment & Portfolio Account Management

Directed at investors, these services not only enable consumers to

check on the status of a variety of investment vehicles (such as stock, bonds,

and money market certificates), but to purchase and sell them as well. In

addition, they may also enable the consumer to transfer funds into their

checking and savings accounts located at other financial institutions.

9.4.3 Major Service Providers and Competitive Business Strategies

Home Banking Services

9-14



The major providers of homebanking services today are listed in
the table below.
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Table 9-5
* Current HomeBanking Service Providers *

1986

Service Provider

ADP Telephone Computing

Services/Home Banking

Interchange

Anacomp/Videoserv

Bank of America/Home

Banking

Chase Manhattan Bank/

Consumer Home Banking

Chemical Bank/Pronto

Citibank/HomeBase

Continental National

Bank/Home Banking

System

Empire of America,

Macrotel/TransTouch

Farmers State Bank

and Trust, BankWork/

Farmers Home Banking

First Interstate Bank/

Day-and-Night Video

Banking

Horizon Bancorp/

Horizon Home Banking

Huntington Bank/Bank

Share

Madison National Bank/

Home Teller

Region # of Users Protocol

Nationwide 2,000 NAPLPS

Nationwide NM* Prestel

California 20,000 ASCII

New York 200 ASCII

New York 11 ,000 ASCII

New York I ,000 ASCII

Miami 200 ASCII

Buffalo NM* NAPLPS

Jacksonville, 20 ASCII

IL

Los Angeles 250 ASCII

New Jersey NM* ASCII

Ohio NM* ASCII

Washington, 300 ASCII

D. C.

(cont'd)
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Table 9-5 (cont'd)
* Current HomeBanking Service Providers *

1986

Service Provider Region # of Users Protocol

Manufacturers Hanover

Trust

New York NM* ASCII

NAPLPS

National Bank of Detroit,

Applied Communications/

Video Informaiton Pro-

vider

Detroit NM* Prestel

NCR Universal Credit

Union/Companion-at-

Home

National 100 ASCII

Penn Security Bank &

Trust/People Server

Videotex Service

Scranton, PA 50 ASCII

Shawmut Bank of Boston/

Home Banking

Massachusetts NM* ASCII

Toledo Trust/VistaBanc Toledo, OH 120 ASCII

United States Trust Co./

UST Master Account

New York 70 ASCII

VideoFinancial Services,

Viewdata Corp. of Amer-

ica/Applause

South Florida 850 NAPLPS

NM*: Not meaningful, in startup phase

_ource: _iTeleservices Report" _rom Arlen Communications

It is the consensus of banking industry analysts that the major

"high tech" banks on the leading edge of developing new consumer banking pro-

ducts and services for the 1990's are:

. Mellon National Corporation

• Mercantile Texas Corporation

• Wachovia Corporation

• Banc One Corporation

• Citicorp

• Bank of Boston Corporation

• Irving Bank Corporation

• First Interstate Bancorp

• NBD Bancorp
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Financial Services

The major publicly held providers of today's financial services are

listed in the table below.

Rank

I

2

3

4

5

6

7

8

9

I0

Table 9-6

Financial Institution

Merrill Lynch & Company

E. F. Hutton & Company

Paine Webber Inc.

Dean Witter Reynolds

Goldman Sachs & Company

Bache Halsey Stuart

Salomon Brothers

Stephens Inc.

Shearson Loeb Rhodes

First Boston Corp.

Home banking and financial services providers reach and distribute

their services to their customers through a variety of distribution channels.

As a major integral part of their business development strategies, these pro-

viders will continue to refine and expand those channels, namely: I) auto-

mated teller machines (ATMs) and/or point-of-sale (POS) terminals located at

banks and retail outlets; 2) debit cards; 3) videotext; 4) telephones; and 5)

telephone & on-line databases/personal computers. Although most of these

channels are technically not "home" based, they do enable consumers the flexi-

bility to conduct their transactions in a number of geographically dispersed

areas. However, their evolution toward and integration with true home based

systems are expected to occur by the late 1990's.

ATMs/POS Terminals

ATMs are essentially remote terminals combined with cash dispensing

capabilities which are tied to a mainframe computer of an individual bank or

of a regional or nationwide network. Although ATMs were located primarily

outside of a bank and used to supplement the regular bank teller staff, the

trend has been for banks to expand their potential customer base by becoming

part of regional or national ATM networks. There are presently approximately

5,000 banks that belong to 100 regional ATM networks. The number of ATM term-

inals in these networks are expected to grow from the current installed based

of approximately 25,000 units to over 75,000 by the end of the 1980's. The

largest regional ATM networks are listed in the following Table.
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Network

Name

Table 9-7

MAJOR REGIONAL ATM NETWORKS

Number of

Service Area Member Banks

#

ATMs

Plus

Instant

Teller

Day & Night

Teller

NETS

Exchange

AZ, CA, CO, IW, KN, LA,

NB, NV, NM, OR, SD, UT,

WA, WY

CA, WA, OR, AZ

AZ, CA, CO, ID, MT, NV,

NM, OR, UT, WA, WY

NB

WA, OR

Iowa Transfer IW

System

Fast Bank MN, WI, ND, SD, MT

Instant Cash MN, MT, ND, SD, WI

Tyme WI

Cash Station IL

MAC-Link MI

MAC PA, NJ

Jeanie OH, KY, IN, VA, MD, D.C.

Network Ex- MD, VA, D.C.

change

Mid-Atlantic MD, VA, D.C.

Exchange

Owl OH, IN, KY

(cont' d)

260

78

21

95

5O

570

92

157

330

50

176

54

23

7

26

300

230

600

250

176

232

170

165

360

75

200

215

150

250

5OO

205
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Table 9-7 (cont'd)

MAJORREGIONALATMNETWORKS

Network Numberof #
Name Service Area MemberBanks ATMs

Pulse TX, LA 400 400

MPACT TX, OK, AK, LA 217 257

CheckOKard OK 36 122

Source: Business Week: January 18, 1985

Approximately a dozen banking consortia are planning to develop

nationwide ATM networks. An additional twenty-seven other banks are consider-

ing the option of joining this network. The consortium of the Chase Manhattan

Bank and the Colorado National Bank appear to be taking the lead with esta-

blishing the most extensive national networks. Presently, there are five ma-

jor national ATM networks. They are: I) Plus System; 2) Cirrus System; 3)

Nationnet; 4) MasterTeller; and 5) Visa Travel Network.

Not all the networks, however, are to serve strictly banking inter-

est. Some of the networks are serving the requirements and interest of re-

tailers and credit card companies. The first major national retail-banking

network was established and evaluated by First Interstate Bancorp, the na-

tion's largest multibank holding company, along with the Bank of Montreal,

Manufacturer's Hanover, and First Chicago. In addition, Visa International

and MasterCard are providing national consumer credit and retail purchasing

services through a national network. The J. C. Penney Company, all the major

airlines, shopping malls, and convenience stores are offering ATM based ser-

viu_ on a nationwide basis. _-inaily, supermarket chains are beginning to

offer ATM based services. For example, Publix Super Markets headquartered in

Lakeland, Florida has placed ATMs in 255 of its stores.

Thus, present and future uses and applications of ATMs are gaining

popularity and acceptance by the home banking services industry as well as its

competitors.

Debit Cards

Although debit cards may be used to purchase goods and services

in much the same way as credit cards, they differ in two fundamental ways.

First, Debit Cards are usually issued by banks rather than retailers, credit

card companies, or other financial institutions to enable the cardholder to

gain access to and use the funds in his/her account for routine transactions
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as well as for obtaining cash from ATMs. In limited circumstances, they may
also be used to purchase goods and services from retailers that are part of a
bank's debit card network. Homebanking analysts anticipate that the capabil-
ities of ATMsand POSswill be mergedinto a new generation of "direct debit
POSsystems" that will faciliate purchasing transactions between retailers and
consumers which would result in a greater use of the banks' services and
greater competition for the credit card companies. Second, because Debit
Cards are instruments of banking institutions, they are presently more re-
stricted than credit cards in terms of their uses beyond bank related trans-
actions. However, if current regulatory issues can be resolved involving the
inconsistencies between the Truth-in-Lending Act and its implementing Regula-
tion Z (which governs credit transactions) and the Electronic Funds Transfer
Act and its implementing Regulation E, this barrier can eventually be elimin-
ated.

Despite current restrictions, however, the use of Debit Cards is
extensive. According to The Nilson Report, a banking industry newsletter,

there are approximately 50 million proprietary Debit Cards in use. This is

triple the number from two years ago and equal to the domestic circulation of
VISA credit cards.

Videotext

To a limited degree, banks are using videotext on an experimental

basis to provide home banking services to its customers. Videotext rather

than teletext is being evaluated because of its interactive and transaction

capabilities. These systems are based primarily on ASCII rather than NAPLPS

(North American Presentation Level Protocol Standard).

Videotext based home banking services are presently being offered

by new business alliances such as the IBM, Sears, and CBS consortium which is

providing "Trintext." Other groups include Time Inc. with Chemical Bank, ATT

and Bank of America which are providing "Covidea"; and Citicorpo NYNEX Corp.

and RCA Corp. which provides "Direct Access/Dollars and Sense." All of the

services are transaction rather than strictly information oriented.

Preliminary reaction to these services indicate that they will have

to be provided on a national basis to be cost effective to the providers.

From the consumers' perspective, the monthly service fee will have to be less

than $15 and the number of other banking, financial and purchasing services

will have to be increased in order to remain attractive and be used on an on-

going basis. What this means to the providers is that the service itself will

have to be subsidized by the revenues generated from the cash float or related

sources resulting from consumer transactions or deposits.

Services based upon the ASCII protocol and provided on a high vol-

ume regional or national basis costs approximately $20 per month per customer.
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The ability to provide the required additional services in an appealing gra-

phic or visual format desired by consumers, however, is limited. The project-

ed costs for using the more flexible NAPLPS are expected to fall in the future

(early 1990's) to around $20-25 per month on a volume basis. Thus, it appears

that regardless of the approach selected, the providers will have to subsidize

a significant percentage of the costs of the home banking services.

Telephone

By far the simplest and most widely used distribution channel for

home banking and financial services is the telephone. Approximately 36

million pay-by-phone transactions were conducted in 1982, a fourfold increase

from 1980. The major draw-back to this technology, however, is that it is

more labor and, therefore, cost intensive for banks and financial institutions

than the other electronic channels being evaluated. In addition, a telephone

based service is more constrained in terms of the number and volume of

transactions that can be handled per unit of time.

Additional experiments are being conducted to integrate the tele-

phone with other technologies to take advantage of the natural affinity and

familiarity consumers already have with it. The other technologies include

personal and home computers, videotext terminals, and high resolution TV/home

entertainment centers.

Telephone & On-line Databases/Personal Computer

To date, only a few home banking services are being offered that

are designed for an integrated telephone/modem/personal computer system. The

home banking industry estimates that there are approximately 44,000 consumers

and small business owners now using personal computers to do their home bank-

ing.

Some of the more extensive services are:

I ) "HomeBanking" and "Dollars and Sense" being marketed by Bank of Ameri-

ca. The two services are linked by a proprietary PC software package

called Moneylink and is designed to run on either and IBM PC or Apple

II.

2) "Banc Once" and "Videofinancial Services" are being offered by Knight-

Ridder.

3) "Spectrum" is a service which enables customers to balance their ac-

counts, pay bills, transfer funds, and to write and send checks. The

service is being provided by Chase Manhattan Bank.

4) "Pronto" and "Business Banker" are services similar to the ones men-

£ioned above with an emphasis on the small business marketplace.
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Several other banks are presently developing their strategies to
implement niche oriented PC driven homebanking services. Someof the more
aggressive ones include Security Pacific National Bank in Los Angeles, Con-
tinental National Bank in Miami, and Madison National Bank in Washington,
D.C.

Someof the major PCbasedhomefinancial services include:

Table 9-8

* Top PCBased HomeFinancial Service Providers *
1985

Company Type of Service Revenues

(millions $'s)

Dun & Brad-

street

Quotron

TRW

Telerate

Reuters Commodities and $505

securities quotes

and news

Credit and miscellaneous

business information

Securities quotes

Credit checks

Commodities and securities

quotes

McGraw-Hill Financial information 120

Dow Jones Securities and general 100

business formation

325

187

160

149

Source: BusinessWeek, August 25, 1986

9.4.4 Home Banking/Financial Service Subscriber Estimates

Based upon the data presented and the opinions of banking and fi-

nancial institution analysts, the estimated number of present and projected

subscribers to true home services are summarized in Table 9-9.
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Table 9-9
* Overall HomeService Subscribers Estimates *

Service Category
Estm. # of Subscribers Estm. Compounded

1985 mid-1990's Annual Growth Rate

Home Banking 36,000 30 million 95%

Home Financial 57,000 10 million 70%

Source: Datamation: September 1985

The dramatic increases in the number of subscribers are based upon

the assumptions that: I) PC/Home computers and modems will continue to be

pervasive consumer products; 2) the cost of providing services based upon

ASCII or NAPLPS protocols will continue to decline; and 3) the services will

be properly packaged, marketed and priced with other transaction oriented,

easy and convenient to use features that serve actual rather than perceived
consumer needs.

9.4.5 Technology Requirements

Although no major technological breakthroughs are required to en-

able the home banking and financial service industries to grow, several com-

ponents to the delivery system need to be refined. More sophisticated appli-

cations PC software needs to be developed to provide consumers with easier ac-

cess to the variety of services being offered. Some industry experts believe

that the integration of videotext terminals with PCs will serve as an even

greater catalyst for consumer acceptance and market growth. And although the

preferred communications link between the service providers and their subscri-

bers remains the telephone and is deemed adequate for the forseeable future,

some strategies are being refined to use alternative links such as DBS anten-

nas in addition to FM carrier frequencies.

Therefore, if these markets are inhibited from achieving their pro-

jected growth rates, it will be because of business, market, regulator or oth-

er related barriers, and not because of the lack of available communications

and information processing technologies.
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9.5 MARKETSEGMENTOVERVIEW - HOME SHOPPING SERVICES

9.5.1 Market Status and Projections

Home shopping services are older than the Sears Roebuck and Company

catalogue which was started in 1886. Although originally designed to serve

populations in remote geographic locations throughout the country, the concept

has undergone dramatic changes over the past ten years. Shopping at home by

virtually all segments of the buying public is now so common that it is con-

sidered to be a permanent and pervasive part of the retail industry, and is

expected to represent a major competitive threat to traditional retail outlets

such as stand-alone stores and shopping malls. The forces driving this threat

are the conveniences afforded to shoppers through home shopping services, and

changes in consumer buying behavior because of altered work schedules and

lifestyles of all members of the households of today and the future.

In 1985, the retail industry sold approximately $250 billion worth

of goods and services. The Home Shopping segment of the retail industry ac-

counted for roughly $50 billion or 20% of those sales. Almost $49.2 of the

$50 billion were generated through catalogue sales. Sears, the nation's lar-

gest retail business, was responsible for $4 billion of those sales through

its catalogue ordering service. The balance of the sales (approximately $800

million) were generated through specialty cable and broadcast TV programs de-

signed specifically as home shopping services.

Retail sales are expected to exceed $370 billion by the mid 1990's.

Industry analysts estimate that by that time at least 30% of those sales, or

$111 billion, will be generated through home shopping services.

The implications of these trends are that the number of consumers

will not only increase, but will be spending more money per transaction as

well. Presently: approximately 25 million individuals purchase qoods and ser-

vices through home shopping services each year. That number is expected to at

least double by the mid-1990's. Although traditional catalogue and telephone

based shopping services are expected to continue to represent a significant

share of the home shopping industry, TV based services, many of them provided

on a 24-hour basis, will possibly make significant in-roads, represent the

fastest growing segment of the home shopping industry, and capture at least

25% of marketplace.

There are several reasons for the move toward using more advanced

electronic and information technologies in this industry. The major providers

of home shopping services believe that, if effectively applied, they would

serve to: I) lower the cost of sales; 2) increase profit margins; and 3) de-

velop and penetrate additional market segments such as the millions of con-

sumers that work between 4 p.m. to midnight, and those that are homebound be-

cause of handicaps. And because of changing lifestyles, consumers are expect-

ed to make greater use of these type of services because of: I) greater con-

venience to their personal schedules; and 2) easier and quicker access to a
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broader selection of goods and services.

Becauseof this anticipated growth, several strategies are evolving
by traditional retailers and newcomersto use information technologies to cap-
ture more segments of the marketplace (more commonlyreferred to in the trade
as "niche markets"). It is anticipated that there will be fewer general home
shopping services such as the Sears catalogue and more electronically based
"niche" services to serve specific sub-segments of consumers by demographic
category or by product and service preferences. Someexamples of the demogra-
phic categories that will probably be used include: a) income; b) profession;
c) geographic location; d) male/female; e) age; f) marital status; g) family
status; h) ethnic background; i) political affiliation; j) religious affilia-
tion; k) leisure activities; and i) type of housing owned/rented. These cate-
gories will be cross-referenced with product/service categories ranging from
inexpensive and expensive holiday gifts to furniture and home furnishings,
clothing, toys, appliances, food, automobiles, tools, and vacations.

9.5.2 Description of Major HomeShopping Services

The major homeshopping services fall into three categories. They
are I) mail-order; 2) telephone ordering; and 3) interactive TV/telephone or-
dering. Although some home shopping services are being provided through
videotext based programs, they are still considered to be in the experimental
and evaluation stages with a questionable future because of the difficultly in
presenting quality graphic and textual materials as well as simultaneously
providng data inquiry and processing capabilities in a cost effective manner.
For those reasons, a rigorous analysis of this type of service was not
undertaken for this study.

Mail-Order

hv mmi I _Q fho nlAoef hnmm ehnnni nn :o_sTimo as,a_ lmhlo fmhrA_ring J

consumers today. Originally designed to enable individuals located in geogra-

phically isolated locations to purchase products from retailers headquartered

in urban areas, mail-order is now commonplace and used by virtually every

segment of the population. In response to an item described in a catalogue or

newspaper insert, a consumer may now simply fill out an order form, include a

credit card number or personal check, then mail it. Presently, the major lim-

itations to this service are: a) ensuring that the appropriate consumers re-

ceive catalogues or inserts in a timely fashion; and b) the response time to

fulfill orders has been typically two weeks to several months, depending upon

the type of item ordered.

Telephone Ordering

Telephone ordering, or "pay-by-phone," is simply a quicker method

than the ordering by mail method. Most services provide a toll-free 1-800

number and the ability to have purchases charged to credit cards. Although it
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also enables consumers to interact with the retailers to have questions re-
garding products and services to be answered, this method still has the same
limitations as the mail-order method.

Interactive TV/Telephone Ordering

In£eractive TV/telephone ordering which is presently available on a

limited basis is the newest home shopping service for consumers. Through this

service an individual may select a cable or broadcast home shopping service

program, see and hear about selected items being sold, then order it by tele-

phone through a toll-free number and charge it to his or her credit card.

These type of services are often available on a 24 hour basis. Although this

type of service appears to have a significant amount of appeal, some of the

major limitations include the slow rate at which products can be introduced

(an average of one every 5-10 minutes), and the inability to visually examine

the product for extended periods as can be done with a photograph in a tradi-

tional catalog. Order fulfillment, however, is a strong feature of this ser-

vice. Products are usually received within 4-10 days of ordering.

9.5.3 Major Service Providers and Competitive Business Strategies

The major providers of the home shopping services described in Sec-

tion 9.5.2 are: I) both large and small department and specialty stores; 2)

catalogue merchandisers; and 3) broadcast and cable TV based retail opera-

tions.

Department and Specialty Stores

Of the $250 billion in retail sales generated in 1985, approximate-

ly $133 billion were from department and specialty stores. An estimated 15%

of their sales were generated through a combination of mail and telephone or-

ders. Although there are over 400 national and regional department and spe-

cialty store chains, almost $93 of the $133 billion (or 70%) resulted from

sales from 10 major national department store chains. The major companies are

presented in Table 9-10.
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Table 9-10

* Top 10 Deparment and Specialty Stores *

in Terms of 1985 Sales

Industry

Rank

Name

Retail & Catalogue

Sales

(billions $'s)

I

2

3

4

5

6

7

8

9

10

Sears Roebuck & Company $22.8

K Mart Corporation 16.8

J. C. Penney Company, Inc. 14.7

Federated Department Stores 7.5

Montgomery Wards 6.8

Dayton Hudson Corporation 4.4

May Department Stores 3.9

Carter Hawley 3.1

Allied Stores Corporation 2.9

R. H. Macy & Company 2.7

Source:

Total $92.8

Ward's Directory of 55,000 Largest U.S.

Corporations

These companies are expected to continue to play significant roles

in developing and refining home shopping services for the retail markets of

the 1990's. However, in order to maintain their market positions and to en-

courage and facilitate greater consumer expenditures, several companies such

as Sears, K Mart and J. C. Penney are developing business strategies to ex-

ploit consumer electronic and information technologies beginning as early as

1987.

Catalogue Merchandisers

There are over 900 major catalogue merchandisers in the U. S. that

also use mail and telephone order services as well as discount retail show-

rooms to generate sales. The following table lists the leading companies in

this industry segment.
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Table 9-11
* Top 10 Catalogue Merchandisers *

1985

Ind us try

Rank

I

2

3

4

5

6

7

8

9

10

Name Catalogue Sales

(billions $'s)

Service Merchandise Company

Best Products

Consumer's Distributed

Brendles

L. Luria & Sons

United Jewelers & Distributors

W. Bell & Company

Jewelcor, Inc.

Kay's Merchandise Mart

McDade & Company

$2.900

2.254

0.903

0.240

0.184

0.176

0.150

0.130

0.126

0.112

Source: National Catalogue Merchandisers Assoc.

(Dec. 1986)

In addition to individual merchandisers, cooperative marketing and

sales efforts amongst large numbers of non-competing companies are beginning

to be formed to help minimize costs, increase profitability, and to implement

other selling strategies and technologies. The largest cooperative effort has

been formed by Mann Media, Inc. which promotes the goods and services of its

100 members under the trade name of "American Catalog Shopper Network."

Like the department and specialty stores, the catalogue merchan-

disers believe that their traditional channels of marketing, sales and distri-

bution have matured: that the life styles, buying patterns, and purchasing

sources of their customers are changing; and that in order to maintain their

competitive edge, they will have to use other methods and technologies such as

electronic media in the future.

Broadcast & Cable TV Services

Presently, there are only 25 companies providing home shopping ser-

vices via broadcast or cable TV programming. Although the number appears to

be small, it has been estimated that the number of potential consumers reached

through these programs exceed 30 million with approximately 3 million active

buyers. The leading services and companies in this industry are summarized in

Table 9-12.
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Table 9-12
* Leading TV Based HomeShopping Service Providers *

1986

Service

24-HOURCHANNELS

. Home Shopping Network

. Cable Value Network

• QVC Network#

. Shop Television Network

• Sky Merchant

PART-TIMECHANNELS

• Telephone Auction

• Valuetelevision

• Tempo Galleria

• Telshop

Audience

Reached

(millions)

Owners

15.0 Publicly held

(cable)*

9.0

(cable )

COMB and 18 major

cable operators

7.6 Public, cable opera-

(cable) tors**

5.0 Publicly held

(cable)

0.8

(cable)

Jones Intercable

40.0

(broadcast)

21 .0

(broadcast)

12.5

(cable )

10.0

(cable )

Publicly held

Horn & Haordart, Lor-

imar Telepictures,

and Fox TV

Private

Financial News Net-

work

(cont'd)
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Table 9-12 (cont'd)

Audience
Service Reached Owners

• Entertainment Marketing

• Crazy Eddie

• Video Shopping Mall

(millions)

2.0 Publicly held

(cable)

1.5

(satellite )

Crazy Eddie, Inc.

0.5 Publicly held

* May have an additional 25 million broadcast viewers

by the end of 1986.

** Sears has an option to buy 2 million shares•

# Will go to 24 hours in Jan. 1987.

Note: Audience reached column is not additive.

Source: Business Week/December 15, 1986

Today, TV based home shopping services are demanding a lot of at-

tention from corporate planners and investors representing major department

store chains and catalogue merchandisers because of early and dramatic finan-

cial successes by a handfull of pioneering companies. Some industry analysts

estimate that by the mid-1990's, this type of service will be available to

approximately 50 million TV viewers, which represents almost half of the pro-

jected viewing public. Although sales in 1986 are expected to be in the $500

million range, this type of omnipresent exposure in the future is expected to

generate over $36 billion in retail sales via TV based home shopping services.

Today, the major competitors in the TV home shopping service marketplace are

Home Shopping Network (HSN), Cable Value Network (CVN), and QVC.

Between its fiscal years 1985 and 1986, HSN's sales increased ten-

fold to $160.1 million, with earnings of $17 million. In 1987 sales are

expected to increase to $714 million with earnings of $78.8 million. In ad-

dition, HSN reaches 12 million homes through its cable TV network, and pre-

sently has an estimated 500,000 regular customers•

CVN is an affiliate of COMB, one of the world's largest merchandis-

ers of liquidated goods• CVN formed a joint venture with several of the coun-

try's biggest television cable companies, including number I Tele-Communica-

tions, Inc. before it began nationawide 24-hour programming in September of

1986. With CVN's 22 cable partners, it now has approximately 10 million sub-

scribers which represents almost 25% of the current cable subscriber market-

place•
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Adding further credibility to the TV based home shopping service
industry, Sears, Roebuck & Company,the nation's number I retailer has given
exclusive rights to QVCNetwork, Inc. to merchandise the company's brand name
products to over 7.6 million viewers.

A small niche already exists for home shopping services delivered
via home satellite dish antenna owners. For example, Crazy Eddie, Inc., a
highly successful NewYork based retailer of consumer electronics started its
broadcast retailing show in October of 1986, promoted as "Crazy Eddie World of
HomeEntertainment Shopping Network." It is beamedvia satellite to over 1.6
million viewers as part of a larger programmingpackage. Data is presently not
available as to how manyof these viewers are active buyers of the goods sold
on the Network.

As digital TV, direct broadcast satellite antennas, and personal
computer technologies become more sophisticated and easier to use and less
costly, greater interactive and integrated capabilities are expected to de-
velop, which, in the TV home shopping service industry will lead to greater
market penetration and utilization of its services.

9.5.4 HomeShopping Service Subscriber Estimates

Based upon the estimates of several industry analysts, the number
of actual users of home shopping services are expected to grow from today's
level of 25 million consumers to more than 50 million by the mid-1990's. This
represents an average compoundedannual growth rate in the marketplace of 7%
per year for the next ten years. The only service that may continue to re-
quire subscription fees in the future will be the ones based upon cable or
direct broadcast satellite TV transmissions.

Presently, approximately 3 million of today's 25 million homeshop-
ping service users subscribe and purchase through TV/telephone based services.
That number may grow to over 10 million by the mid-1990's, representing an
average compoundedannual growth rate of just over 15%.

These major trends are summarizedin Table 9-13.
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Table 9-I 3
* Estimated HomeShopping Service Subscribers *

HomeShopping Estm. # of Subscribers Growth

Market Segment 1985 mid-1990's Rate

• Mail & telephone

ordering services

• Broadcast, cable,

and DBS services

21 million 40 million 7%

3 million I0 million 15%

There are a number of technological as well as business factors,

however, that will serve to inhibit or facilitate the development of the sub-

segment of the interactive TV/telephone market using satellite, particularly

Ka band, technologies during the mid-1990's timeframe.

The most aggressive estimates assume that a large majority (i.e.

80% or more) of the estimated 6.7 million home satellite antennas that are

expected to be purchased by the mid-1990's will automatically be used for home

shopping as well as entertainment services• Other assumptions in these esti-

mates are that the interactive features and capabilities of satellite based

services that will be required by consumers will be mostly if not entirely

available by the mid-1990 timeframe; and that the programming and service

costs will be brought down to a level to where they can be partially subsi-

dized by the providers and the balance incorporated into the price of the

goods and services sold to the subscribers.

More conservative analyses assume _,at only a small p_rc_x,L_

(i.e. 5 - 10%) of antenna sales will translate into on-going subscribers to

home shopping services; and that the technological and business issues will

only be partially resolved by the mid-1990's. Under these conditions, these

analyses also assume that the subscribers will represent the "early adopters"

segment of the consumer market. These type of individuals have traditionally

taken the lead over the general population by an average of 5 - 10 years in

terms of using a new technology. This market phenomenon is not new. Recent

examples of "early adopters" include air travelers, and owners of automobiles,

color televisions, personal computers, and video cassette recorders. In es-

sence, some industry experts do not believe that the satellite based home

shopping service marketplace will undergo significant expansion until the

early 2000's.
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Therefore, based upon the aggressive and conservative analyses, the

best estimates of the number of subscribers to satellite based home shopping

services by'the mid to late 1990's range from 700 thousand to 5.4 million•

9.5.5 Technology Requirements

Ka band based home shopping services will be in direct competition

with existing voice, broadcast and cable TV technologies• The major strengths

of these competing technologies are that they are: I) pervasive with exten-

sive installed infrastructures; 2) available and easy to use; 3) familiar and

accepted by consumers; and 4) relatively cost affective.

The major weaknesses of these existing technologies in terms of

their use for interactive home shopping services are: I) products can only be

demonstrated and sold in series, which makes it difficult to present large

volumes of goods and services per unit of programming time; 2) the consumer

must wait or pre-schedule his/her time to view products of interest; and 3)

consumer interaction is limited to asking questions about or purchasing pro-

ducts that have recently been demonstrated during the program•

In order for Ka band based services to compete against these es-

tablished technologies, they must enable service providers and subscribers to:

• Eliminate the need for "Live" performance oriented

programming•

Randomly request and transmit information on product

categories or individual products• Still-frame or

videotext type of formats would be acceptable.

• Simultaneously transmit, verify and complete orders

and credit/debit card transactions.

Beyond the data and transmission rate capabilities of Ka band sat-

ellites, these capabilities will evolve only if a host of supporting and com-

plementary technologies and their infrastructures are developed as well. The

major developments required are in: I) software which will enable both the

service providers as well as subscribers to request, transmit and receive the

desired product graphics and data as well as to verify and conclude financial

transactions; 2) communications networks between the product providers, ser-

vice programmers, and consumer credit or banking institutions; 3) transferring

enormous amounts of product information from graphic and textual form to digi-

tal format in timely and cost effective ways; and 4) the availability of con-

sumer electronic products with the required integrated, transaction oriented

capabilities•
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9.6 MARKETPOTENTIALANDSUBSCRIBERESTIMATES

Based upon the criteria and weighting factors described in Section
9.2 as well as the quantitative and qualitative information presented in Sec-
tions 9.3 thru 9.5, the calculations to determine the potential number of D-
T-S subscribers are summarizedin the following tables.

9.6.1 Probability & Weighted Market Potential Estimates

The probability and weighted market potential estimates are pre-
sented in Tables 9-14 thru 9-17.

Table 9-14

* Probability Estimates for Achieving *
HomeBanking Market DevelopmentGoals

MARKETSEGMENT:HomeBanking Services

Category�Criteria Weighted

Potential

Estimates

I. Market Segment Status & Projections

a. Overall subscriber growth rate

b. Overall growth timeframe

c. Geographic distribution of subscribers

2. Busi,iess Development

a. Competing business development strategies

b. Strong competitors to serve markets

3. Technology Requirements

a. Commercial availability

b. Competing technologies

1.0

1.0

0.8

1.0

1.0

0.9

1.0

Probability Estimate

(product of la. x lb. x ... 3b.)

0.72
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Table 9-15

* Probability Estimates for Achieving *
HomeFinancial Service Market DevelopmentGoals

MARKETSEGMENT:HomeFinancial Services

Category/Criteria Weighted

Potential

Estimates

I. Market Segment Status & Projections

a. Overall subscriber growth rate

b. Overall growth timeframe

c. Geographic distribution of subscribers

2. Business Development

a. Competing business development strategies

b. Strong competitors to serve markets

3. Technology Requirements

a. Commercial availability

b. Competing technologies

1.0

1.0

0.9

1.0

1.0

0.9

1.0

Probabi li ty Estimate

(product of la. x lb. x ... 3b.)

0.81
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Table 9-16

* Probability Estimates for Achieving *
HomeShopping Market DevelopmentGoals

MARKETSEGMENT:HomeShopping Services - Mail/Telephone

Category/Criteria Weighted
Potential
Estimates

I. Market Segment Status & Projections

a. Overall subscriber growth rate

b. Overall growth timeframe

c. Geographic distribution of subscribers

2. Business Development

a. Competing business development strategies

b. Strong competitors to serve markets

3. Technology Requirements

a. Commercial availability

b. Competing technologies

0.8

1.0

1.0

1.0

1.0

1.0

1.0

Probability Estimate

(product of la. x lb. x ... 3b.)

0.8
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Table 9-17

* Probability Estimates for Achieving *
HomeShopping Market DevelopmentGoals

MARKETSEGMENT:HomeShopping Services - TV Based

Category/Criteria Weighted
Potential
Estimates

1. Market Segment Status & Projections

a. Overall subscriber growth rate

b. Overall growth timeframe

c. Geographic distribution of subscribers

2. Business Development

a. Competing business development strategies

b. Strong competitors to serve markets

3. Technology Requirements

a. Commercial availability

b. Competing technologies

1.0

0.9

0.8

0.9

0.9

0.8

1.0

Probabi li ty Estimate

(product of la. x lb. x ... 3b.)

0.47
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Based upon the probability estimates calculated in the previous
tables, the Weighted Market Potential Estimates are presented below.

Table 9-18

* Weighted Market Potential Estimates *

MARKETSEGMENT
ESTM.# OF
SUBSCRIBERSPROB.ESTM.

WEIGHTEDSUBCRIBER
POTENTIAL

HomeBanking 30 million .72

HomeFinance 10 million .81

HomeShopping

- Mail/Tel. 40 million .80
- TV 10 million .47

21.6 million

8.1 million

32.0 million
4.7 million

9.6.2 D-T-S Subscriber Estimates

The researchers of this section of this report were tasked to de-
termine the relationship between the cost of a Ka band based system for
consumers and the potential number of subscribers to services that would be
provided through that communications link. This relationship could not be
defined at this point in time for the following reasons.

Accurate cost vs sales estimates for consumeras well as industrial
products and services are not based on linear relationships, even for well es-
tablished items in mature markets. They are based upon several inter- as well
as independent business, technological, market, and economic variables such
as: 1) investment and market penetration strategies; 2) return on investment

(ROI) requirements; 3) alternative market options and development opportuni-

ties; 4) product or service development, distribution, marketing, selling, and

maintenance costs; 5) internal operating costs; 6) tax incentives and barriers

or incentives from government regulations; 7) fluctuating market demand; 8)

competitive business strategies; and 9) alternative technologies and channels

of distribution. For new, evolving services such as the ones described in

this section it is even more difficult to define the relationship between any

one of these variables and the potential number of subscribers that may de-

velop.

Some recent examples of how complex these relationships are and how

seemingly independent the number of users are from the cost of the delivery

system for services include:
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• Air Transportation - Although the cost of aircraft

is incorporated into the price of airfares, aircraft costs

" do not directly influence the number of airtravelers that

will fly on a particular plane or with a specific airline.

Local/Long-Distance Telephone Service - The cost of the

installed based of telephone equipment and capacity is

no longer the major factor for determining the rates

which the various telephone companies charge their

non-business customers.

Cable TV - Despite the fact that cable TV programers have

lowered their monthly fees to subscribers, the overall

market continues to stagnate, and, in some segments,

is declining. The major issue is the quality of the

programs being provided rather than the cost of the

service.

Based upon the data analyzed, the home services described in this

section of the report will continue to evolve and be packaged and priced to

accommodate market and business requirements and needs, and not solely upon

the cost of providing the service nor the communications technology upon which

it is based. If Ka satellite technologies become available within the

mid-1990 timeframe and if they can be used to develop or penetrate markets for

home services, their costs may or may not be directly incorporated into the

fees charged to subscribers. Home service providers may elect to partially

subsidize these system costs or imbed them into the cost of other services or

products sold through the subscription service.

Minitel of France, for example, is using this strategy to provide

its videotext service to its subscribers. The government's telecommunications

authority, Direction General des Telecommunications, that operates the network

provides the videotext terminals to users at no cost. The cost of today's

home services provided by U. S. companies are based upon similar strategies,

albeit not as dramatic. Telephone based banking services cost consumers be-

tween $0.00 to $0.50 per transaction. Many electronic fund transfer payments

costs between $5 - $10. Subscription fees for cable TV based home shopping

programs costs between $25 - $50 per month. However, broadcast TV based pro-

grams are free to the viewers. On-line data base services for financial in-

formation can cost between $50 - $200 per month depending upon usage and the

type of information extracted from the data bases. None of these fees to the

subscribers reflect the full costs for providing the services. Likewise, the

number of subscribers to these services do not depend on price alone.

Table 9-19 presents the maximum and, in the opinion of the re-

searchers of this section of the report, a more realistic estimated potential

of the number of D-T-S subscribers that may develop for the home services ex-

amined in this study.
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Two different but related sets of non-Ka system cost assumptions
were used to estimate the potential numberof subscribers to HomeBanking and
Financial services, as well as to HomeShopping services. The underlying as-
sumption that was applied to both market segments was that the maximumnumber
of D-T-S subscribers can not be greater than the total estimated installed
base of DBSantenna users in the 1995 timeframe. This is simply because that

D-T-S services can not be received without them. The rationale for this

assumption is explained in Section 9.3 of this report.

For the Home Banking and Financial services marketplace, it was

further assumed that 25% of the DBS antenna marketplace will be for Ka band

designs and capabilities and be used to acquire these services via PC link.

For the Home Shopping services marketplace, it was assumed that 80% of the Ka

band antenna owners also owned either conventional or HDD TVs. This subseg-

ment of the antennas marketplace translated into approximately 20% of the

weighted market potential for TVs.

Table 9-19

* Estimated D-T-S Subscribers *

Weighted Estm. D-T-S

Market Max. D-T-S Market Pene-

Service Potential Potential tration

Home Banking

Home Financial srv.

Home Shopping

- Mail/telephone

- TV Based

21.6 million *6.7 million

8.1 million *6.7 million

1.75 million

(@25% penetra-

tion)

1.4 million

(@25% penetra-

tion)

32.0 million NA NA

4.7 million #4.7 million I million

(@20% penetra-

tion)

* Based on Table 9-4

# Assumes that all DBS antennas owners also own a conventional

or HDD TV.
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The maximumnumber of D-T-S subscribers assumes that all the re-
quired interactive and integrated consumer electronic products are available
and that 100%of all the owners of these systems becomehomeservice subscrib-
ers. However, since this scenario is highly unlikely and because of the tech-

nology requirements and limitations of the TV based services, it appears that

the home banking and financial service markets will have greater potential

than the home shopping programs, at least through the mid-1990's.

These estimates should not be representative of the total potential

of each of these service categories, but rather as an indicator of the early

stages of adoption in each of the market segments. The trends and data ana-

lyzed suggest that significant market growth may in fact be several times

greater than these numbers indicate, albeit in the late 1990's to early

2000's.

9.6.3 Rankings & Conclusions

Based upon the estimates developed, the Home Banking, Financial

Services and mail/telephone based Home Shopping markets ranked "High" in terms

of their potential. The TV based services of the Home Shopping markets ranked

"Moderate." Likewise the greatest opportunity for D-T-S services appear to be

in the Home Banking and Financial Services markets. Because of the business

and technological barriers to entry, the Home Shopping market does not appear

to represent as significant an opportunity in the mid-1990's timeframe for Ka

based services.

None of the markets, however, will probably experience the explo-

sive growth predicted for these markets as a whole. Although there are ex-

ceptions, most successful services and technologies have been developed and

commercialized over a period of several years and at relatively modest growth

rates. It should also be noted that in general any new product or service has

a low probability (2-5%) of long-term success in the competitive marketplace,

and that the commercialization cycle for new technologies such Ka band satel-

lites has historically ranged from 10 - 25 years despite their attractive

functional features. Even the telephone took over 25 years before it was able

to be used by businesses on a low level, intermittent basis.

Therefore, even the weighted subscriber estimates may be considered

optimistic. Based upon what is believed to be a realistic assessment of the

market potential for the home services described in this section, the fol-

lowing recommendations are offered as the concluding remarks to this study:

I. Ka band satellite technology should continue to be developed to

the proof-of-concept stage. Only after that milestone is

achieved should the cost of a commercial system and its poten-

tial impact on subscriber fees be examined.
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2. The satellite(s) should be designed to provide home service com-

panies and subscribers the capability to encrypt, transmit and

decrypt banking and financial service information on an inter-

active basis.

3. TV based Home Shopping Services should not be pursued as a pri-

mary target of opportunity. However, the developers of Ka band

satellites should monitor developments in the consumer electron-

ics and home shopping service industries and re-examine trends

within the next 3 years to determine whether or not any signifi-

cant changes have occured to warrant placing this market segment

at a higher priority.

* * *
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SECTION 1 0

NEW TECHNOLOGIES

There are no new technologies presented in this report.
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Acronyms

ACTS

BER

CATV

CONUS

CPS

CPU

DA

FSS

JPL

MSAT

PC

PSTN

R

SOW

SSMA

TVRO

VS AT

WTC

GLOSSARY

Advanced Communications Technology Satellite

Bit Error Rate

Cable Television

Continental United States

Customer Premises Service

Central Processing Unit

Demand Assigned

Fixed Satellite Services

Jet Propulsion Laboratory

Mobile Satellite

Personal Computer

Public Switche_ Telephone Network

Random Access

Statement of Work

Spread Spectrum Multiple Access

Television Received Only

Very Small Aperture Terminal

W.T. Chen & Co., Inc.
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Variables

A

B

CNR

6

d

D

f

F

G

IF

K

m

M

n

N

P

r

R

RF

S

T

TB

U

U T

W

GLOSSARY (Continued)

Relative amplitude of interchannel interferer

Normalized carrier frequency spacing

Single user bandwidth (burst rate), also, relative amplitude Of co-

channel interferer

Carrier-to-noise power ratio

Burst factor; also, user duty factor

Distance

User transmission delays frequency; also, diameter of parabolic

antenna

Frequency

Frequency reuse factor (M/N)

Channel traffic (normalized)

Intermediate frequency

Number of co-channel interferers; also, code constraint length;

also, number of uplink packet slots per satellite frame

Wavelength

Number of Capture ALOHA channels per uplink beam

Number of beams

Number of uplink frequency channels per uplink beam

Number of frequency subbands

Power

Code rate; also, rain region index

Channel data rate; also, roundtrip delay in packet lengths

Radio frequency

Channel throuqhput or efficiency

Average message interarrival times; also, half of baseband modula-

tion window support; also, receiver system noise temperature

Single-user time-bandwidth product

Total number of simultaneous users

Total number of users

Total available bandwidth
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